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Abstract 

 

Purpose: Previous research has captured point estimates for population means of 

somatic variables associated with swimming speed across strokes, but have not 

determined if predictors of swimming speed operate the same at the upper tails of 

the distribution (τ =0.9) as they do at the median levels (τ =0.5) and lower levels (τ 

=0.1). Method: Three hundred sixty-three competitive-level swimmers (male [n=202]; 

female [n=161]) participated in the study. To identify key somatic variables 

associated with 100-m swimming across and between strokes controlling for age, we 

used a Bayesian allometric quantile regression model, refined using Bayes Factors 

and Leave-one-out cross validation. Results: High probabilities (>99%) were found 

for arm-span, seated-height and shoulder-breadth being the strongest somatic 
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predictors across strokes. For individual strokes, Bayesian quantile regression 

demonstrated that the relative importance of predictors differs across quantiles. For 

swimmers in the 0.9 quartile, shoulder-breadth is a more important than height for 

front-crawl, wide shoulders are important for breaststroke swimmers but can be 

detrimental when combined with narrow hips, seated-height and hip-width are 

important for backstroke swimming speed, and calf girth for butterfly. Conclusion: 

These results highlight the importance of considering key somatic variables for talent 

identification in swimming and ensure young swimmers focus on strokes compatible 

with their somatic structure. The most important new insight is that predictors differ 

for the best swimmers compared to average or poorer swimmers. This has 

implications beyond swimming, pointing to the importance of considering the upper 

tails of distributions in performance and talent identification contexts. 

Keywords: swimming; somatic variables; talent; Bayesian modelling; allometric 

modelling  
 

1. Introduction 

 

Identifying key somatic characteristics of athletes from an early age is an important 

tool for talent identification.1 , 2. This is particularly true in swimming, where they are 

considered amongst the most important factors in enabling swimmers to achieve a 

high-level performance during their careers 3, 4. While for talent identification 

purposes, there are concerns with how limb sizes may change with maturation, 

proportional body segment breadth measures are stable from preadolescence 

through to adulthood, and the proportionality of upper limbs stable from mid-

adolescence onwards 5. This stability in proportion seems to point to the importance 

of using allometric models when exploring somatic variables in the context of talent 

identification. While standard linear analysis can fail to properly represent 

proportional changes, allometric models where both response Y and predictors X are 

log transformed, are able to explain proportionality between the Y and X. In a 

performance context, these models also have the advantage of having the flexibility 
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of a non-linear quadratic in age within an exponential term ensuring that speed 

remain non-negative irrespective of the child or adolescent’s age.  

 

A number of studies have explored the morphology of swimming, examining somatic 

and demographic predictors of particular swimming strokes 6,7,8. A swimmer’s 

morphology is genetically determined, with inheritance for body and limb length 

around 70%, and 50% for body and limb girths respectively 9. Therefore, it seems 

sensible, where possible, to encourage young athletes to make the most of their 

inherited morphology by guiding them to train and compete in strokes that are the 

most compatible with their particular somatic structure.   

 

The primary method of analysis in these studies is ordinary least squares regression. 

While this provides a good estimate of y when x is close to the mean, it can perform 

poorly at other levels 10. Nonetheless, exploring the key predictors for the very best 

athletes is really important in elite sport and talent development contexts, therefore 

alternative analysis methods that can identify predictors of the best rather than 

average performers in any particular cohort may prove more useful. A recent study 

attempted to explore differences in some somatic variables according to swimming 

speed 11. Swimmers were grouped into one of three levels: level 1, national 

champions, national record holders and/or enrolled in a talent ID program; level 2, 

swimmers racing in national competitions; and level 3, swimmers racing 

predominantly in local and regional competitions. The study found level 1 and level 2 

athletes were, on average, taller, heavier and had longer limbs than those in level 3.  

 

No previously published study has explored if predictors of swimming performance 

operate the same at the upper tails of the distribution as they do at the mean or 

median levels. Quantile regression allows this by quantifying the relationship of 

important predictors across different aspects of the conditional distribution of 

swimming speed, while also allowing error heteroscedasticity 12. Therefore, this study 

aimed to determine the key somatic variables associated with the best young 

swimmers in each of the four swimming strokes using this approach, to allow 
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coaches to guide young swimmers to train and compete in strokes that are the most 

compatible with their somatic structure. The best young swimmers are defined as 

those in the 90th percentile of the cohort for swimming speed and poorest in the 10th 

percentile, after controlling for age in each case.   

 

2. Methods 

 

2.1 Participants 

 

Three-hundred and sixty-three competitive-level swimmers (male [n=202]; female 

[n=161]) were recruited for the study (front-crawl swimmers: n=74, butterfly 

swimmers: n=167, backstroke swimmers: n=63, and breaststroke swimmers: n=59), 

mean age =13.85± 3.10. Mean age for the individual strokes were, front crawl = 

17.14 ± 3.53, butterfly = 13.29 ± 2.75, backstroke =13.48 ± 1.07, and breaststroke = 

11.69 ± 1.20 (all demographic details are outlined in supplementary Table 1). We 

acknowledge that these data have been published previously 13, but critically, the 

focus, analysis and findings for that study were markedly different.  The reason for 

differences in the mean age of participants across strokes is because of national 

requirements for swimmers under 13 years of age to participate in butterfly, 

backstroke and breaststroke, but not front crawl. 

 

Swimmers were recruited from 4 clubs in the capital of Tunisia one week prior to the 

winter championship. They were all competing at a national level and following the 

same volume of training for each age category (the volume required by the Tunisian 

Swimming Federation). In addition, a number of the participants competed at 

international meetings including the Word-Cup, and 13 participants were medallists 

(gold, silver and bronze) in Maghrebin (North African) championship. 

 

At the time of data collection, participants were swimming training five to six training 

times per week (4000 ± 1000 m per session; 8 ± 1 hour per-week) in preparation for 

the Tunisian Winter National Championships. The total distance per session for each 
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stroke was 5000 ±1000 m for the front crawl, and 4000 ±1000 m, for the 

breaststroke, backstroke, and butterfly. In addition, to the swimming training, 

swimmers were involved in 3 dry-land training sessions per week (4±1 hour per 

week).  

 

Written informed parental consent and participant consent or assent was obtained 

prior to the start of the study. All youth athletes and their parents / legal guardians 

were informed about the experimental protocol and its potential risks and benefits 

before the commencement of the research. Institutional ethical approval was gained 

from the Ethics Institutional Review Committee for the ethical use of human subjects 

at Ksar Saïd University, Tunisia.  

 

2.2 Somatic measurements  

 

All the somatic measurements were taken in accordance with standardized 

procedures of the international society for the advancement of kinanthropometry 

(ISAK)14 (Supplementary Table 1).  

 

After calibration, testing was undertaken in a standardized order. Height (m) and 

body-mass (kg) were assessed to the nearest 0.1 cm and 0.1 kg, using a SECA 

stadiometer and a SECA weighing scale (SECA Instruments Ltd, Hamburg, 

Germany). Skinfold measurements (in millimetres) were made using Harpenden 

skinfold callipers (Harpenden Instruments, Cambridge, UK). Skinfold measurements 

were taken on the right-hand side of the body at the triceps and the subscapular, with 

body-fat estimated using the Slaughter et al.15 skinfold equation. Limb-lengths, girths 

and breadths were measured using a large sliding calliper and anthropometric 

measuring tape. Each assessed via direct measures using landmarks techniques.  

 

Upper arm length was measured from landmarks placed to acromiale and dactylion 

while athletes stood in the erect position. The lower-arm length was measured as the 

distance between measured from radiale and stylion landmarks. Hand-length was 
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measured as the shortest distance from the marked midstylion line to the dactylion. 

Upper-limb length was taken as the distance between marked acromiale and radiale 

landmarks. Lower limb length was determined by subtracting sitting height from 

standing height. Thigh-length was determined as the distance between trochanterion 

and tibiale lateral landmarks. Leg length was the distance from the height of the 

tibiale lateral to the top of the surface where the participant stood. Foot-length was 

measured from the Akropodion (i.e., the tip of the longest toe which may be the first 

or second phalanx) to the Pternion (i.e., posterior point on the calcaneus of the foot). 

Arm-relaxed girth was measured at the marked level of the mid-acromiale- radiale. 

The tape was positioned perpendicular to the long axis of the arm.  

 

Forearm-girth was measured at the maximum girth of the forearm distal to the 

humeral epicondyles. Wrist-girth was taken distal to the styloid processe; the 

minimum girth in this region. Thigh-girth was taken at the marked mid-trochanterion-

tibiale-lateral site. Calf-girth was the maximum girth of the calf taken at the marked 

medial calf skinfold site. Ankle girth was determined as the minimum girth of the 

ankle taken at the narrowest point superior to the Sphyrion tibiale. Biacromial breadth 

was measured between the most lateral points of the acromion processes. Bi-

iliocristal breath was defined as the distance between the most lateral points on the 

iliac crests. All somatic measures were recorded twice and the mean scores were 

retained for the statistical analysis. Intraclass correlation coefficients (ICCs) for test-

retest reliability ranged from 0.97 to 0.99 for all somatic and skinfolds measures. 

 

 

2.3 Swimming speed quantification 

 

The swimming speed (SS), in meters per second (m.s-1), was calculated from 

swimming times in seconds from the official results published by the Tunisian 

swimming Federation during the Winter National Championships. The average speed 

was calculated as the ratio between distances swam and the total time recorded in 

this distance (m.s-1). at the championships, SS was measured with a high technology 
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electronic timing (Omega, Switzerland). Water temperature, as determined by 

Fédération Internationale De Natation 16, was kept between 25 and 28 degrees 

centigrade.  

 

Descriptive statistics (means ± SD) of SS, demographic and somatic 

measurements by sex and stroke are presented in supplementary Table 1.  

 

2.4 Data analysis 

 

Allometric modelling was used for all models fitted, which involves log-transforming 

response and predictor variables. This log-transformation is useful for representing 

proportional changes in allometric relationships, something that is essential for the 

present study. A Bayesian approach was taken to data analysis, in part to 

circumnavigate the widely reported issues with the misinterpretation of traditional p-

values 17, but also because of the more intuitive interpretation of the results in terms 

of direct probability and statistical intervals. Moreover, Bayesian models provide an 

estimate of a complete distribution rather a single value and this allows more 

nuanced consideration of parameters.  

 

The data analysis was conducted in two stages. The first stage involved identifying 

key predictors across all swimming strokes combined, and the second involved 

identifying key predictors of each stroke separately. For the first stage of analysis, a 

saturated Bayesian allometric regression model was fitted with all predictors 

included. The measurements, used as predictors in the model, included body-mass, 

height, percentage body-fat and limb dimensions (lengths and girths). In order to 

determine the best predictors of swimming speed, this initial model was fitted using a 

Jeffrey’s prior on sigma and a Zellner-Siow Cauchy prior on model coefficients. The 

aim of this being to select the combination of predictors with the highest Bayes 

Factor (BF). Bayes Factors can be used to identify models with the highest amount of 

evidence in their favor from the models considered 18. Marginal posterior inclusion 

probabilities (MPIP) were calculated to determine how likely a particular predictor 
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was in the ‘true model’. Bayes Factors, and MPIP for models and variables were 

calculated using the Bayesian adaptive sampling algorithm described by Merlise, 

Ghosh, and Littman 19 and implemented using the Bayesian Adaptive Sampling 

(BAS) package 20 in R 21. Posterior inclusion probabilities greater than 0.5 were 

included in the model and any predictor with a lower probability was discounted.   

 

The second stage of analysis involved modeling the best predictors for each stroke in 

three phases. Phase one, involved identifying the best predictors using the same 

methods described above. In phase two, the predictors identified in phase one were 

further refined by fitting different response distributions to each model, including 

Gaussian and t-distributions. To determine which of these models best fitted the 

data, Leave-One-Out cross-validation (LOO) was used. LOO uses log-likelihoods 

from posterior simulations of the parameter values to estimate point-wise out-of-

sample prediction accuracy to determine the relative predictive performance of the 

model to the data; the lowest LOO information criterion (LOOIC) the higher the 

predictive accuracy 22. Once the best models for each stroke – in terms of predictors 

and response distributions - had been identified, phase three involved fitting 

Bayesian quantile regression models for each stroke (0.1, 0.5 and 0.9 quantiles) to 

understand how the key predictors explain swimming speed (SS) in the fastest 

swimmers compared to slower swimmers at the middle and bottom of the distribution. 

All models were fitted using the Bayesian Regression Models using Stan (brms) 

package 23 with MCMC sampling via Stan 24. 

 

Along with posterior distributions for parameters in model, the probability of direction 

for each parameter in each model was calculated. Mathematically, the probability of 

direction is defined as the proportion of the posterior distribution that has the same 

sign as the median, and can be interpreted as the probability- expressed as a 

percentage- that a parameter described by its posterior distribution is strictly positive 

or negative (whichever is the most probable). Moreover, given it familiarity in 

standard regression analysis, a Bayesian version of R2 was also calculated as an 

estimate of the proportion of variance explained for future performances 25.  
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All models reported were checked for convergence (r̂ = 1), with the graphical 

posterior predictive checks showing simulated data under the best fitted models 

compared well to the observed data with no systematic discrepancies.  To illustrate 

how the relationships between different somatic variables and SS in the four different 

strokes, the 0.9 quantile models were used to make predictions for SS and 100-m 

times using new but plausible values for predictors within the range of the empirical 

data collected. 

 

3. Results 

 

3.1 Across strokes 

 

Predictors with marginal inclusion probabilities greater than 0.5 included log 

transformed seated height (0.60), log transformed bi-acromial breadth (0.99), log 

transformed bi-iliac breadth (0.77), log transformed arm span (0.98), log transformed 

body fat (1) sex (0.54), and age (0.97).  

 

The strongest somatic predictors across strokes are shoulder width (bi-acromial 

breadth) followed by arm-span and seated-height. For every one percent increase in 

shoulder-width we can expect SS to increase by 0.42 percent, 0.33 percent for arm-

span, and 0.30 for seated-height. There are extremely high probabilities of positive 

relationships between 100-m SS and shoulder-width (100%) arm span (100%), and 

seated-height (99.95%) conditional on the data (see Table 1).  

 

**Table 1 near here** 

**Table 2 near here** 

 

 

 

3.1.1 Front-crawl 
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The regression slopes are different for different quantiles (0.1, 0.5, and 0.9) of front-

crawl SS (see Table 2; Supplementary figure A). For the average swimmer (τ =0.5), 

height is the most important variable in predicting 100-m front-crawl SS with every 

one percent increase in height predicting a 0.67 percent increase in SS. However, in 

the best swimmers (τ =0.9), shoulder-breadth (bi-acromial breadth) plays a greater 

role (see Table 2). For average swimmers, every one percent increase in shoulder 

breadth we can expect SS to increase by 0.55 percent, whereas for the faster 

swimmers (τ =0.9) a one percent increase results in a 0.77 percent increase in 100-m 

SS. The percentage of body fat is a stronger predictor for better swimmers than for 

average or poorer swimmers. The probability of direction for all somatic predictors for 

front-crawl is >96%. How different combinations of height and shoulder-breadth (bi-

acromial breadth) predict 100-m SS and swimming times are shown in Table 3.  

 

3.1.2 Breaststroke 

 

Again, the regression slopes are different for different quantiles (0.1, 0.5 and 0.9) of 

breaststroke SS (see Table 2; Supplementary Figure C), albeit only minimally for 

shoulder-breadth (bi-acromial breadth). The influence of hip-width (bi-iliac breadth) in 

particular, differs across levels of SS. For the poorer swimmers (τ =0.1) having wider 

hips is the most important predictor of 100-m breaststroke SS, in contrast for the best 

swimmers (τ =0.9), shoulder-breadth is the strongest predictor. Percent body fat is a 

slightly stronger predictor for average breaststroke swimmers than for the best or 

poorest swimmers (see Table 2). The probability of direction for all somatic predictors 

of breaststroke in the model is >99%. The importance of different shoulder and hip 

breadths on100-m backstroke SS and times is illustrated by selected predictions 

shown in Table 3. 

 

3.1.3 Backstroke 
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In backstroke SS, once again, the regression slopes differ across the different 

quantiles (0.1, 0.5 and 0.9) (see Table 2; Supplementary figure B). Arm-span is the 

most important somatic variable in predicting backstroke SS in poor (τ =0.1) and 

average (τ =0.5) swimmers, but least important for the best swimmers (τ = 0.9), 

where seated-height is the strongest predictor. In the strongest backstroke 

swimmers, for a one percent increase in their seated-height, we can expect a 0.49 

percent increase in 100-m SS. Percent Body-fat has a slightly weaker relationship 

with 100-m breaststroke SS in the weaker and average swimmer than with the best 

swimmers, but only minimally so. The probability of direction of the majority of 

somatic predictors of backstroke SS were <99%, with the exception of arm-span 

(90.85%). The importance of seated-height and hip-width on 100-m backstroke SS 

and times are illustrated by the predictions in Table 3.  

 

3.1.4 Butterfly 

 

As with all other strokes, the regression slopes differ across the different quantiles 

(0.1, 0.5 and 0.9) of 100-m butterfly SS (see Table 2; Supplementary figure D). For 

lower performing swimmers (τ =0.1) shoulder-breadth (bi-acromial breadth) is the 

strongest somatic predictor of 100-m butterfly SS, with a one percent increase in 

shoulder-breadth 100-m butterfly SS is predicted to increase by 0.62 percent. 

However, shoulder-breadth is the weakest of the somatic predictor for the best 

swimmers (τ =0.9). For both the average (τ =0.5) and the best swimmers (τ =0.9), 

calf girth is the strongest single predictor. For the average swimmer, a one percent 

increase is associated with a 0.82 percent increase in 100-m butterfly SS., and with 

the best swimmers a 0.45 percent increase in SS. Interestingly, the difference 

between ankle girth and calf girth is less pounced in the best swimmers compared to 

those in the lower quartiles (τ =0.1 and 0.5).  Percent body fat is a predictor across 

quantiles, but is a slightly less important predictor for the best swimmers. The 

probability of direction of the majority of the somatic predictors are >95%, with the 

exception of bi-acromial breadth (90.77%). The impact of different combinations of 
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calf girth, ankle girth and hip-width (bi-iliac breadth) measurements in predicting 100-

m butterfly SS and time are shown in Table 3. 

 

**Table 3** 

 

4. Discussion  

 

This study aimed to determine the key somatic variables associated with the best 

young swimmers in each of the four swimming strokes, to allow coaches or other 

interested others to guide young swimmers to train and compete in strokes that are 

the most compatible with their particular somatic structure. The most important and 

novel finding of the present study is that somatic predictors of SS differ in the upper 

tails of the distribution in each of the four strokes, suggesting the relative importance 

of predictors differ for the best swimmers compared to average or poorer swimmers. 

This has implications beyond swimming, pointing to the importance of considering 

the upper tails of distributions in performance contexts in general and for talent 

identification specifically.  

 

Bayesian allometric modeling was initially used to identify the optimal somatic 

measurements associated with 100-m SS across swimming strokes. Then, 

importantly for the purpose of talent identification, identifying the most important 

somatic predictors for the best swimmers in each stroke using Bayesian quantile 

regression.  

 

After controlling for age and sex, five key somatic predictors were identified as 

having a high probability (>96%) of an association with average SS (m.s-1) across 

the four strokes. The strongest association was with shoulder breadth, followed by 

arm-span, seated-height, body fatness and least convincingly hip breadth. This 

suggests, it is an advantage in general for swimmers to have broader shoulders, a 

longer torso, long arms, low body fatness and, far less certainly, narrower hips. 

These general characteristics have been identified previously 26, 27, 1. It is a generally 
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acknowledged that arms contribute more to force generation than the legs in 

swimming 28, 29, 30, 31, with broad shoulders and a long arm reach useful for a 

swimmer across strokes, especially when combined with a long torso. A long torso, 

particularly relative to leg length, shifts a swimmer’s centre of mass toward their hips, 

achieving a more horizontal body position improving hydrodynamic efficiency by 

reducing drag and allowing for maximum propulsion, the centre of mass and the 

centre of buoyancy being closely related 32. Similar to other sports, our findings 

suggest lower body fatness does play a role in SS across strokes.  

 

4.1 Front crawl 

 

The results clearly show how height and shoulder breath are important 

considerations for practitioners to consider when selecting swimmers for front crawl 

training, something that has been identified previously 33. Nonetheless, the new 

insight from quantile regression is that for the best swimmers’ shoulder breadth is a 

more important consideration than height per se. The predictions from the front crawl 

model clearly illustrate this (see Table 3). For example, all else being equal, a front 

crawl swimmer who stands 195-cm tall, would take 0.51s less time to swim 100-m 

than a swimmer 5-cm shorter. However, importantly, a swimmer with the same height 

and only 1-cm lower arm span, is predicted to swim 100-m 0.65 sec slower. So, a 1-

cm difference in shoulder breadth has a greater impact on SS than a 5-cm difference 

at this height (see Table 3). 

 

4.2 Breaststroke 

 

The somatic predictor with the strongest relationship with SS in the poorest 

swimmers is hip-width followed by shoulder-breadth. While shoulder width has a 

stronger relationship to SS than hip-width in the best swimmers, the more interesting 

finding concerns the relationship between these two measures. While not obvious 

from the regression coefficients, the predictions show a pronounced V-shape - wider 
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shoulders and narrow hips - is related to poorer breaststroke SS in the best 

breaststroke swimmers (see Table 3).  

 

4.3 Backstroke 

 

The somatic predictor with the strongest relationship with SS in the best backstroke 

swimmers is seated-height, followed by hip-width. Nonetheless, assuming 

importance directly from this can be misleading. Allometric scaling is relative to the 

attribute being measured. In the sample, the seated-height of backstroke swimmers 

covers 24.3-cm, whereas, hip breadth ranges are much less at 9.5-cm between 

lowest to highest. Given the effects are multiplicative, a 1-cm difference in hip 

breadth has more of impact than a 1-cm difference in seated-height (see Table 3). 

 

4.4 Butterfly  

 

Calf girth is the strongest somatic predictor for across quartiles in butterfly swimmers. 

This suggests for the best, average and poorest butterfly swimmer, lower leg 

muscularity is important in this stroke and may be related to the strong knee flexion 

required for and optimal propulsion and hip position 34. However, given doubts as to 

the suitability of using lower limb proportions as selection criteria in talent 

identification programs 5, calf muscularity may not be useful for selection purposes. 

For slower and average swimmers, shoulder-breadth is an important predictor of SS. 

Nonetheless, our findings suggest that shoulder-breadth is less important for the best 

swimmers (see Table 3). 

 

As expected, this study has some limitations. Firstly, our models do not include 

predictors such as muscle genetics (muscle fibre type etc.) or technique quality, 

which may mediate the relationship between the somatic variables and SS. 

Nonetheless, to include these measurements, participant numbers would need to be 

reduced which would be detrimental for the study. Future research should consider 

exploring the relationship between somatic variables and SS across different 
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distances (50-m, 200-m etc.). Finally, we acknowledge that given body proportions 

differ in pre-pubertal and early-pubertal children when compared with adolescents, 

our predictions for the ideal proportions at different ages may be influenced by these 

differences. 

 

5. Conclusion 

 

A number of studies have explored the somatic and demographic predictors of SS, 

but none have explored how the importance of each predictor might change when 

comparing the upper tails of the distribution to the usual mean or median levels. The 

results support some the results of some previous findings in highlighting importance 

of somatic measurements for talent identification and/or athlete monitoring purposes. 

Nonetheless, crucially the findings of this study highlight the importance of 

considering the upper tails of the distribution when exploring predictors. In practical 

terms, while arm-span, seated-height and shoulder-breadth were important across 

the four swimming strokes investigated, for individual strokes, the relative importance 

of predictors differed for the best compared to the average and poorest swimmers.  

We found shoulder-breadth to be a more important consideration than height for front 

crawl; wider shoulders combined with narrow hips to be detrimental for the best 

breaststroke swimmers; seated-height important for backstroke SS, with hip-width 

also proving crucial; finally, we found calf girth important in butterfly swimmers. 

 

In summary, our findings suggest that researchers attempting to predict sports 

performance in general and for talent identification in particular, the upper tails of 

distributions should be explored as well as the usual average or median values.  
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Table 1. Bayesian regression model predicting log-transformed swimming speeds across four 

swimming strokes with predictors that have the highest weight of evidence given the data as 

determined by Bayes Factor 

 

Ln (100 m speed [m.s-1]) 

 

Predictors Estimates CI (95%) 
Probability of 

direction (%) 

Intercept -4.29 -4.98 – -3.56 100.00 

Breaststroke -0.11 -0.14 – -0.08 100.00 

Butterfly 0.01 -0.02 – 0.03 63.80 

Front crawl 0.15 0.12 – 0.17 100.00 

Sex (Male) 0.03 0.02 – 0.05 100.00 

Cubic (age) 1 0.58 0.33 – 0.82 100.00 

Cubic (age) 2 -0.35 -0.50 – -0.19 100.00 

Cubic (age) 3 0.26 0.14 – 0.38 100.00 

Ln (Body Fat [%]) -0.09 -0.12 – -0.06 100.00 

Ln (Bi-acromial breadth [cm])  0.42 0.25 – 0.59 100.00 

Ln (Bi-iliac breadth [cm]) 0.07 -0.02 – 0.17 96.45 

Ln (Arm Span [cm]) 0.33 0.18 – 0.47 100.00 

Ln (Seated height [cm]) 0.30 0.16 – 0.45 99.95 

Observations 363  

R2 Bayes 0.856  

The reference category in the model is backstroke and other stroke coefficients are compared to this  
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Table 2. Bayesian regression models of log-transformed swimming speeds for the four main 

swimming strokes with predictors that have the highest weight of evidence given the data as 

determined by Bayes Factor and LOOIC. 
Quantile 0.1   0.5   0.9   

  Estimates CI (95%) Estimates CI (95%) Estimates CI (95%) 

Front Crawl Predictors             

Intercept -4.42 -5.94 – -3.35 -4.82 -6.04 – -3.34 -3.64 -4.69 – -2.25 

Ln (body fat [%}) -0.11 -0.14 – -0.07 -0.08 -0.13 – -0.04 -0.12 -0.19 – -0.06 

Ln (Bi-acromial Breadth [cm])  0.59  0.32 –  0.90  0.55  0.34 – 0.80  0.77  0.47 – 0.96 

Ln (Height [cm])  0.57  0.30 –  0.87  0.67   0.32 – 0.95  0.32 -0.03 – 0.64 

R2 Bayes  0.8   0.785   0.793  

Breaststroke Predictors             

Intercept -2.29 -3.67 – -1.11 -1.42 -2.73 – -0.24 -2.71 -3.63 – -1.55 

Quadratic (Age) 1  0.39  0.15 –  0.74  0.55  0.35 – 0.71  0.53  0.37 –  0.72 

Quadratic (Age) 2 -0.06 -0.21 –  0.09 -0.13 -0.25 – -0.01 -0.1 -0.21 –  0.01 

Ln (body fat [%]) -0.08 -0.17 – -0.00 -0.15 -0.22 – -0.08 -0.12 -0.18 – -0.06 

Ln (Bi-acromial Breadth [cm])  0.25 -0.20 –  0.79  0.31 -0.00 – 0.66  0.62  0.35 –  0.82 

Ln (Bi-iliac Breadth [cm])  0.47  0.11 –  0.78  0.23  0.04 – 0.44  0.27  0.09 –  0.44 

R2 Bayes  0.645   0.721   0.779  

Backstroke Predictors             

Intercept -4.07 -4.90 – -3.27 -4.26 -5.20 – -3.32 -4.3 -5.28 – -3.35 

Cubic(age) 1  1.6  1.31 –  1.91 1.27  0.97 – 1.56  0.94  0.60 –  1.27 

Cubic(age) 2 -0.61 -0.88 – -0.37 -0.65 -0.83 – -0.47 -0.42 -0.62 – -0.21 

Cubic (age) 3  0.06 -0.18 –  0.29 0.32  0.15 – 0.48  0.23  0.06 –  0.38 

Ln (Body Fat [%]) -0.13 -0.17 – -0.09 -0.14 -0.18 – -0.10 -0.1 -0.14 – -0.05 

Ln (Seated Height [cm])  0.15  0.01 –  0.31 0.22  0.05 – 0.40  0.49  0.25 –  0.62 

Ln (Wrist Girth [cm])  0.04 -0.09 –  0.21 0.27  0.12 – 0.37  0.18  0.12 –  0.29 

Ln (Calf Girth [cm])  0.21  0.05 –  0.41 0.24  0.11 – 0.39  0.20  0.04 –  0.38 

Ln (Bi-iliac Breadth [cm)  0.18  0.05 –  0.32 0.22  0.11 – 0.32  0.28  0.11 –  0.42 

ln (Arm Span [cm])  0.48  0.25 –  0.71 0.33  0.10 – 0.52  0.15 -0.08 –  0.37 

R2 Bayes 0.781  0.786   0.728  

Butterfly Predictors             

Intercept -2.7 -3.71 – -1.90 -3.21 -4.24 – -2.19 -1.78 -2.76 – -0.86 

Quadratic (Age) 1  0.87  0.61 –   1.07  0.47  0.25 –  0.72  0.69  0.45 –  0.92 

Quadratic (Age) 2 -0.28 -0.48 – -0.05 -0.12 -0.32 –  0.05 -0.16 -0.29 – -0.01 

Ln (body fat [%}) -0.16 -0.20 – -0.12 -0.18 -0.24 – -0.11 -0.15 -0.19 – -0.10 

Ln (Calf Girth [cm])  0.60  0.27 –   0.92  0.82  0.48 –  1.10  0.45  0.25 –   0.67 

Ln (Ankle Girth [cm]) -0.56 -0.78 – -0.23 -0.41 -0.68 – -0.13 -0.20 -0.46 –  0.03 

Ln (Bi-acromial Breadth [cm])  0.62  0.37 –  0.93  0.51  0.19 –  0.84  0.18 -0.08 –  0.48 

Ln (Bi-iliac Breadth [cm)  0.16 -0.03 –  0.34  0.14 -0.02 –  0.31  0.27  0.12 –  0.45 

R2 Bayes  0.727    0.691   0.624   
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Table 4. Selected predictions for the best performers (0.9 quantile) from the models for each 

swimming stroke for 100-m performance for a male 15-year-old swimmer   

Front Crawl †   Speed (m.s-1) Time for 100-m (sec) 

Bi-acromial breadth (cm) Height (cm)    

55 195 1.99 50.34  
54 195 1.96 51.11  
53 195 1.93 51.84  
55 190 1.96 50.91  
54 190 1.94 51.61  
53 190 1.91 52.26  
Breaststroke †   Speed (m.s-1) Time for 100-m (sec) 

 

Bi-acromial breadth (cm) Bi-iliac breadth (cm)    

55 35 1.43 70.17  
55 33 1.40 71.30  

55 31 1.38 72.61  
50 35 1.35 74.17  
50 33 1.33 75.33  
50 31 1.30 76.68  
Backstroke †   Speed (m.s-1) Time for 100-m (sec) 

 

Seated height (cm) Bi-iliac breadth (cm)    

100 35 1.58 63.20  
100 33 1.56 64.16  
100 30 1.53 65.53  
98 35 1.57 63.80  
98 33 1.55 64.67  
98 30 1.50 64.67  
Butterfly †   Speed (m.s-1) Time for 100-m (sec) 

 

Calf Girth (cm) Ankle Girth (cm)   
 

42 14 1.60 62.68  
40 14 1.56 64.11  
38 14 1.53 65.47  
42 15 1.57 63.58  
40 17 1.50 66.81  
38 19 1.43 69.80  

 
† Variables in the model but not included in the table were held at their empirical mean 
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Supplementary Table . Descriptive statistics (means ± SD) of swimming speed, demographic and 

somatic measurements by sex and stroke 

Variables Male Female 

Strokes Breaststroke SD Butterfly SD Backstroke SD 
Front 

Crawl 
SD Breaststroke SD Butterfly SD Backstroke SD 

Front 

Crawl 
SD 

N  39   103   30   30   20   64   33   44   

100 m time (s) 97.7 13.5 79.1 13.2 77.2 8.8 54.8 3.3 95.4 9.5 81.8 11.2 79.5 5.0 62.0 4.5 

Speed (m.s-1) 1.04 0.14 1.30 0.22 1.31 0.17 1.83 0.11 1.06 0.10 1.24 0.16 1.26 0.08 1.62 0.12 

Age (yrs) 11.5 1.3 13.1 2.8 14.0 0.6 19.0 3.8 12.1 1.0 13.6 2.6 13.0 1.2 15.9 2.7 

Body Mass (kg) 41.5 9.5 50.0 14.2 48.7 12.3 73.2 9.7 46.0 8.6 49.3 9.2 49.1 7.1 62.5 9.2 

Height (cm) 149.9 10.4 158.3 12.7 157.2 11.6 177.8 6.5 155.9 8.0 157.9 9.0 158.8 7.4 168.9 9.0 

Body Fat (%) 16.8 5.5 16.6 5.2 17.6 5.7 12.9 2.8 19.0 4.3 18.6 3.7 18.2 3.9 18.0 4.4 

Sitting height (cm) 74.4 5.8 78.6 7.1 77.8 6.8 90.7 4.3 76.4 7.9 79.0 6.6 79.7 3.9 85.2 5.0 

Upper limb length 

(cm) 
69.3 5.3 73.3 6.2 72.6 5.6 82.6 3.5 72.0 4.4 73.1 4.5 74.1 4.4 78.6 5.0 

Upper arm length 

(cm) 
29.0 2.2 30.8 2.9 30.5 2.5 34.9 2.1 30.4 2.0 31.0 2.3 31.2 2.2 33.3 2.6 

Lower arm length 
(cm) 

23.2 1.9 24.3 2.1 23.9 1.6 27.2 1.8 23.7 1.7 24.2 1.7 24.3 1.7 25.7 1.9 

Hand length (cm) 18.0 1.6 19.0 1.6 18.9 1.3 21.1 1.1 18.7 1.0 18.9 1.0 19.0 0.9 19.9 1.2 

Lower limb length 

(cm) 
81.6 6.1 85.9 6.6 85.5 5.6 93.4 4.2 85.0 5.0 86.4 5.7 86.9 5.0 92.1 5.2 

Thigh length (cm) 38.9 5.8 41.4 3.1 41.6 3.1 44.3 2.3 42.0 2.2 42.8 3.4 42.9 3.0 45.5 3.9 

Leg length (cm) 42.0 3.4 44.2 3.5 43.7 2.8 48.2 2.7 43.4 2.5 43.7 2.7 44.1 2.5 46.1 2.9 

Foot length (cm) 25.1 2.2 26.2 1.8 26.1 1.6 27.8 1.3 25.5 1.1 25.2 1.1 25.3 1.1 26.3 1.5 

Arm relaxed Girth 

(cm) 
23.0 3.0 24.8 3.8 24.4 3.2 30.7 2.9 23.8 2.3 24.6 2.2 24.1 2.0 28.1 2.0 

Forearm Girth (cm) 21.1 1.9 22.7 3.0 22.2 2.4 27.5 1.9 21.5 1.5 21.9 1.6 21.8 1.5 24.3 2.0 

Wrist Girth (cm) 14.7 1.1 15.5 1.4 15.4 1.3 17.4 0.9 15.4 2.3 15.0 0.8 15.2 0.8 16.8 4.9 

Thigh Girth (cm) 43.9 4.5 46.8 5.4 46.5 4.9 52.9 5.0 46.1 5.6 47.7 4.4 47.3 3.8 51.8 4.3 

 Calf Girth (cm) 30.3 3.1 32.3 3.4 32.4 3.1 36.7 2.0 30.7 3.0 31.9 2.6 32.4 2.3 34.9 2.8 

Ankle Girth (cm) 20.5 1.8 21.2 1.8 21.2 2.1 23.1 1.3 20.5 1.5 20.7 1.2 20.9 1.1 22.4 1.4 

Bi-acromial breadth 
(cm) 

41.5 3.9 43.8 3.5 43.4 2.6 48.2 2.4 43.3 2.3 43.7 2.1 43.9 2.0 45.3 2.4 

Bi-iliac breadth (cm) 24.4 2.4 26.2 2.7 25.7 2.3 29.0 2.2 25.7 2.4 26.5 2.3 26.4 2.2 28.6 2.3 

Arm span (cm) 150.4 13.5 161.1 15.6 160.6 13.1 184.5 9.8 158.3 9.7 160.6 10.6 160.7 10.2 173.4 11.6 
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Supplementary Figure. Bayesian Quantile regression slopes (0.1, 0.5, 0.9) for the four main swimming s
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