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Abstract 

This study identified key somatic and demographic characteristics that benefit all 
swimmers and, at the same time, identified further characteristics that benefit only 
specific swimming strokes. Three hundred sixty-three competitive-level swimmers 
(male [n = 202]; female [n = 161]) participated in the study. We adopted a 
multiplicative, allometric regression model to identify the key characteristics 
associated with 100 m swimming speeds (controlling for age). The model was 
refined using backward elimination. Characteristics that benefited some but not all 
strokes were identified by introducing stroke-by-predictor variable interactions. The 
regression analysis revealed 7 “common” characteristics that benefited all swimmers 
suggesting that all swimmers benefit from having less body fat, broad shoulders and 
hips, a greater arm span (but shorter lower arms) and greater forearm girths with 
smaller relaxed arm girths. The 4 stroke-specific characteristics reveal that 
backstroke swimmers benefit from longer backs, a finding that can be likened to 
boats with longer hulls also travel faster through the water. Other stroke-by-predictor 
variable interactions (taken together) identified that butterfly swimmers are 
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characterized by greater muscularity in the lower legs. These results highlight the 
importance of considering somatic and demographic characteristics of young 
swimmers for talent identification purposes (i.e., to ensure that swimmers realize 
their most appropriate strokes). 

Keywords: Swim speed, talent identification, limb dimensions, ratios, allometric 
models, log-linear regression 

 

Introduction 

Many clubs and national federations invest substantial resources into the 

identification of young gifted or talented athletes to ensure that the most promising 

receive high-quality coaching and training conditions (Williams & Reilly, 2000). 

Anthropometric characteristics are known to be an important factor in identifying 

talented athletes at an early age (Morais et al., 2012; Morais, Silva, Marinho, Lopes, 

& Barbosa, 2017). The fact that anthropometric characteristics are influenced less by 

training compared with other physical-fitness attributes highlights the importance of 

investigating and/or studying anthropometrics when trying to identify early athletic 

potential. 

Recently, a number of studies have reported strong associations between human 

physical characteristics and sports performance (Geladas, Nassis, & Pavlicevic, 2005; 

Negra et al., 2016; Nevill, Oxford, & Duncan, 2015; Sammoud, Nevill, Negra, 

Bouguezzi, Chaabene, & Hachana, 2018a; Sammoud, Nevill, Negra, Bouguezzi, 

Chaabene, & Hachana, 2018b; Sammoud, Nevill, Negra, Bouguezzi, Chaabene, & 

Hachana, 2019). These studies highlighted the importance of determining the 

association between anthropometric characteristics and sports performance in order 

to engage children in appropriate long-term athletic development programmes. 

In swimming, talent identification and development processes play a crucial role in the 

pursuit of excellence across a long-term career. In this regard, anthropometric 

characteristics are arguably one of the most important factors in swimmers achieving 

a high-performance level in their careers (Geladas et al., 2005; Lätt et al., 2010). While, 

these studies identified important characteristics associated with swimming 

performance, they did this for each stroke separately (Jurimae, Cicchella, Latt, Purge, 

Leppik, & Jurimae, 2007; Nevill et al., 2015; Sammoud et al. 2018a; Sammoud et al. 

2018b; Sammoud et al., 2019, 2020). For example, Sammoud et al. (2018a) revealed 

that 100-m butterfly speed performance was strongly and positively associated with 

the segment length ratio [(arm-span)/(forearm-length) and girth ratio (calf-girth)/(ankle-

girth), rather than the whole-body size characteristics. More recently, Sammoud et al. 

(2018b) reported positive associations between 100-m breaststroke performance and 

limb-girth ratio (girth ratio = forearm girth/wrist girth) in young swimmers whose mean 

age was 12 ± 1.2 years. 
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Nevill et al. (2015) revealed that lean body mass was the singularly most important 

whole-body characteristic associated with front crawl swim speeds and that having 

greater limb segment length ratios [i.e., arm ratio = (lower arm)/(upper arm); foot-to-

leg ratio = (foot)/(lower-leg)] were key to personal best swim speeds. Lätt et al. (2010) 

indicated that anthropometrical factors explained 45.8% of 100-m front crawl 

swimming performance in male swimmers aged 15 years. Santos et al. (2012) found 

a positive association (r = 0.68) between the arm muscle area and the propulsive force 

of the arm in young swimmers (9–14 years old), with the increased arm muscle area 

contributing to a greater capacity for strength. Another study by Moura et al (2014) 

showed a positive association between the propulsive force of the arm and body height 

(r = 0.34; p = 0.013), arm span (r = 0.29; p = 0.042), sitting height (r = 0.36; p = 0.009), 

% body fat (r = 0.33; p = 0.016), lean body mass (r = 0.34; p = 0.015) and arm muscle 

area (r = 0.31; p = 0.026). Likewise, Fritzdorf et al. (2009) reported that taller and 

bigger swimmers with longer stroke lengths can produce more force per-stroke. In 

contrast, smaller swimmers whose stroke lengths are shorter will invariably utilize a 

higher stroke rate when competing. 

Bond, Goodson, Oxford, Nevill, and Duncan (2015) suggested that anthropometric 

variables accounted for 63.8% of 100-m freestyle swimming’s total variance in a 13-

year-old male and female swimmers. Similarly, Geladas et al. (2005) examined the 

association between anthropometric measures and swimming performance in male 

and female swimmers aged 12-to-14 years. They showed that upper extremity length 

was associated with a 100-m freestyle performance in males while upper extremity 

length, height, and hand-length were significantly related to performance in females. 

Recently, the main anthropometric determinants of backstroke swimming performance 

have been examined in young swimmers aged 13–14 years (Sammoud et al., 2019). 

The authors revealed that forearm girth, as well as arm relaxed girth, is among the 

main backstroke performance indicators. More recently, Sammoud et al. (2020) 

indicated that length ratio = ([height/leg length]), foot length and ankle girth, biacromial 

breadth (shoulder width) and % of body fat were associated with 100-m front crawl 

mean swimming speed performance. 

As far as we are aware, however, no study has attempted to identify the key somatic 
and demographic characteristics that are common for all strokes, but at the same time, 
to identify other characteristics that benefit only specific/individual strokes. Therefore, 
the purpose of this article was to explore which key somatic and demographic 
characteristics are common to all swimmers and, in addition, to identify further 
characteristics that benefit only specific strokes, i.e. that are “stroke specific”. 

 

Methods 
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Participants 

In total three hundred sixty-three competitive-level swimmers (male [n = 202]; female 

[n = 161]) participated to this investigation (Front-crawl swimmers: n = 74, Butterfly 

swimmers: n = 167, Backstroke swimmers: n = 63, and Breaststroke swimmers: n 

= 59) (demographic details described in Table 1). The majority of swimmers 

(n = 145) contributed to just one swimming-stroke cohort. Eighty-three swimmers 

(n = 83) contributed to two swimming-stroke cohorts (on separate occasions), 

sixteen swimmers (n = 16) contributed to 3 and just one swimmer (n = 1) contributed 

to all 4 swimming-stroke cohorts. We acknowledge that some of these data/details 

have been published previously, but crucially in isolation (Butterfly Sammoud et al., 

2018a; Breaststroke 2018b; Backstroke Sammoud et al., 2019). 
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Table 1. Descriptive statistics (means±SD) of the swimming performance, demographic and somatic measurements by sex and stroke. 
 

Variables Male Female 

Strokes Breaststroke SD Butterfly SD Backstroke SD Front Crawl SD Breaststroke SD Butterfly SD Backstroke SD Front Crawl SD 

N 39  103  30  30  20  64  33  44  

100 m time (s) 97.7 13.5 79.1 13.2 77.2 8.8 54.8 3.3 95.4 9.5 81.8 11.2 79.5 5.0 62.0 4.5 
Speed (m.s_1) 1.04 0.14 1.30 0.22 1.31 0.17 1.83 0.11 1.06 0.10 1.24 0.16 1.26 0.08 1.62 0.12 
Age (yrs) 11.5 1.3 13.1 2.8 14.0 0.6 19.0 3.8 12.1 1.0 13.6 2.6 13.0 1.2 15.9 2.7 
Maturity offset (yrs) -2.33 1.10 -1.02 2.28 -0.87 0.78 3.56 2.46 0.04 1.00 1.06 1.83 0.82 0.96 3.02 1.77 
Body Mass (kg) 41.5 9.5 50.0 14.2 48.7 12.3 73.2 9.7 46.0 8.6 49.3 9.2 49.1 7.1 62.5 9.2 
Stature (cm) 149.9 10.4 158.3 12.7 157.2 11.6 177.8 6.5 155.9 8.0 157.9 9.0 158.8 7.4 168.9 9.0 
Body Fat (%) 16.8 5.5 16.6 5.2 17.6 5.7 12.9 2.8 19.0 4.3 18.6 3.7 18.2 3.9 18.0 4.4 
Sitting height (cm) 74.4 5.8 78.6 7.1 77.8 6.8 90.7 4.3 76.4 7.9 79.0 6.6 79.7 3.9 85.2 5.0 
Upper limb length (cm) 69.3 5.3 73.3 6.2 72.6 5.6 82.6 3.5 72.0 4.4 73.1 4.5 74.1 4.4 78.6 5.0 

Upper arm length (cm) 29.0 2.2 30.8 2.9 30.5 2.5 34.9 2.1 30.4 2.0 31.0 2.3 31.2 2.2 33.3 2.6 
Lower arm length (cm) 23.2 1.9 24.3 2.1 23.9 1.6 27.2 1.8 23.7 1.7 24.2 1.7 24.3 1.7 25.7 1.9 
Hand length (cm) 18.0 1.6 19.0 1.6 18.9 1.3 21.1 1.1 18.7 1.0 18.9 1.0 19.0 0.9 19.9 1.2 
Lower limb length (cm) 81.6 6.1 85.9 6.6 85.5 5.6 93.4 4.2 85.0 5.0 86.4 5.7 86.9 5.0 92.1 5.2 
Thigh length (cm) 38.9 5.8 41.4 3.1 41.6 3.1 44.3 2.3 42.0 2.2 42.8 3.4 42.9 3.0 45.5 3.9 
Leg length (cm) 42.0 3.4 44.2 3.5 43.7 2.8 48.2 2.7 43.4 2.5 43.7 2.7 44.1 2.5 46.1 2.9 
Foot length (cm) 25.1 2.2 26.2 1.8 26.1 1.6 27.8 1.3 25.5 1.1 25.2 1.1 25.3 1.1 26.3 1.5 
Arm relaxed Girth (cm) 23.0 3.0 24.8 3.8 24.4 3.2 30.7 2.9 23.8 2.3 24.6 2.2 24.1 2.0 28.1 2.0 
Forearm Girth (cm) 21.1 1.9 22.7 3.0 22.2 2.4 27.5 1.9 21.5 1.5 21.9 1.6 21.8 1.5 24.3 2.0 
Wrist Girth (cm) 14.7 1.1 15.5 1.4 15.4 1.3 17.4 0.9 15.4 2.3 15.0 0.8 15.2 0.8 16.8 4.9 
Thigh Girth (cm) 43.9 4.5 46.8 5.4 46.5 4.9 52.9 5.0 46.1 5.6 47.7 4.4 47.3 3.8 51.8 4.3 
Calf Girth (cm) 30.3 3.1 32.3 3.4 32.4 3.1 36.7 2.0 30.7 3.0 31.9 2.6 32.4 2.3 34.9 2.8 
Grith ankle (cm) 20.5 1.8 21.2 1.8 21.2 2.1 23.1 1.3 20.5 1.5 20.7 1.2 20.9 1.1 22.4 1.4 
Biacromial breadth 
(cm) 

41.5 3.9 43.8 3.5 43.4 
2.6 

48.2 2.4 43.3 2.3 43.7 
2.1 

43.9 
2.0 

45.3 2.4 

Biiliac breadth (cm) 24.4 2.4 26.2 2.7 25.7 2.3 29.0 2.2 25.7 2.4 26.5 2.3 26.4 2.2 28.6 2.3 
Arm span (cm) 150.4 13.5 161.1 15.6 160.6 13.1 184.5 9.8 158.3 9.7 160.6 10.6 160.7 10.2 173.4 11.6 
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All participants were involved in five to six training sessions per week (4000 ± 1000 

m per session; 8 ± 1 hour per-week). In addition, the training session included the 

four-stroke. Written informed parental consent and participant assent were obtained 

prior to the start of the study. All youth athletes and their parents/legal 

representatives were informed about the experimental protocol and its potential risks 

and benefits before the commencement of the research project. The study was 

approved by the local Ethics Institutional Review Committee for the ethical use of 

human subjects at Ksar Saïd University, Tunisia. 

Anthropometric and somatic measurements 

All the anthropometric measurements were taken by one trained anthropometrist 

assisted by a recorder in accordance with standardized procedures of the international 

society for the advancement of kinanthropometry (ISAK) (Stewart, Marfell-Jones, 

Olds, & de Ridder, 2011) (Table 1). 

Testing was carried out in a standardized order after proper calibration of the 

measuring instruments. Each swimmer’s height (m) and body-mass (kg) were 

assessed to the nearest 0.1 cm and 0.1 kg, using a SECA stadiometer and a SECA 

weighing scale (SECA Instruments Ltd, Hamburg, Germany), respectively. Skinfolds 

measurements (in millimetres) were taken on the right-hand side of the body at two 

sites (the triceps and the subscapular) using Harpenden skinfold calipers (Harpenden 

Instruments, Cambridge, UK). Skinfold data, alongside the skinfold equation of 

Slaughter et al. (1988), were used to estimate the body-fat mass and fat-free mass. 

The following limb-lengths, girths and breadths were assessed using a large sliding 

caliper and a non-stretchable tape measure via direct measures using landmarks 

techniques: arm span, upper-limb length, upper-arm length, lower-arm length, hand 

lengths, lower-limb length, thigh length, leg length, foot length, arm-relaxed girth, 

forearm girth, wrist girth, thigh girth, calf girth, ankle girth, biacromial (shoulder width 

in layman’s terms) and biiliocristal-breadths (hip width in layman’s terms). 

Upper arm length was measured from landmarks placed to acromiale and dactylion 

while athletes stood in the erect position. Upper arm length was determined as the 

distance between the marked acromiale and radiale landmarks. The lower-arm length 

was measured by calculating the distance between the radiale and stylion landmarks. 

For the hand length, the measure was taken as the shortest distance from the marked 

midstylion line to the dactylion. Lower limb length was determined by subtracting sitting 

height from standing height. Thigh length was determined as the distance between the 

marked trochanterion and tibiale lateral landmarks. Leg length was measured as the 

distance from the height of the tibiale lateral to the top of the box (or the floor). Foot 

length was determined as the distance from the Akropodion (i.e., the tip of the longest 

toe which may be the first or second phalanx) to the Pternion (i.e., most posterior point 

on the calcaneus of the foot). Arm-relaxed girth was measured at the marked level of 
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the mid-acromiale-radiale. The tape was positioned perpendicular to the long axis of 

the arm. 

Forearm girth was taken at the maximum girth of the forearm distal to the humeral 

epicondyles. Wrist girth measurement is taken distal to the styloid processes. It is the 

minimum girth in this region. Thigh girth measure was taken at the marked mid-

trochanterion-tibiale-lateral site. Calf girth was defined as the maximum girth of the 

calf taken at the marked medial calf skinfold site. Ankle girth was defined as the 

minimum girth of the ankle taken at the narrowest point superior to the Sphyrion tibiale. 

Biacromial breadths were determined as the distance between the most lateral points 

of the acromion processes. Biiliocristal breath was defined as the distance between 

the most lateral points on the iliac crests. All somatic measures were recorded twice 

and the mean scores were retained for the statistical analysis. 

Swimming performance quantification 

The swimming times and/or speeds expressed in seconds and metres per second 

(m.s−1), respectively, were adopted as our measures of swimming performance. 

Swimming performance was recorded in a 25-m swimming pool. The average speed 

was calculated as the ratio between distances swam and the total time recorded at 

this distance (m.s−1). The performance times were measured with electronic timing 

(Omega, Switzerland) and were obtained for all swimmers from official results 

published by the Tunisian swimming Federation during the Winter National 

Championships. Water temperature was kept between 25 and 28 degrees, as 

determined by Fédération Internationale De Natation (FINA, 2014). 

Descriptive statistics (means±SD) of all the swimming performance, demographic and 

somatic measurements by sex and stroke are given in Table 1. 

Statistical methods 

To identify the optimal demographic and somatic measurements, including body mass 

(M), stature (H), percentage body fat (BF%) and limb dimensions (lengths and girths) 

(LD), associated with 100 m swimming speeds (SS) (m.s−1) in all four strokes having 

controlled for age, we adopted the following multiplicative model with allometric body-

size components similar to those used to model the front-crawl swim speeds adopted 

by Nevill et al. (2015). 
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where “a” is a constant and π (LDi)k
i (i = 4, 5, …,) represents the product of limb 

segment-dimensions raised to the power ki; with i = 4 being the Sitting height, 

5 = Upper limb length, 6 = Upper arm length, 7 = Lower arm length, etc. (see list of 

variables in Table 1) and MO is the maturity offset (Mirwald, Baxter-Jones, Bailey, & 

Beunen, 2002). This model has the advantages of having proportional body-size 

components and the flexibility of a non-linear quadratic in age within an exponential 

term that will ensure that the 100 m swim speeds will always remain non-negative 

irrespective of the child or adolescent’s age (see Figure 1). Note that the multiplicative 

error ratio “ε” assumes the error will increase in proportion to the child’s swim-speed 

performance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The relationship between 100-m swim speeds and age by stroke. 
 

The model (Equation (1)) can be linearized with a log transformation. A linear 

regression on ln(SS) (ln = natural logarithms) can then be used to estimate the 

unknown parameters of the log-transformed model: 

 

 

 

Having fitted the saturated model (all available demographic, somatic and body size 

variables), an appropriate “parsimonious” model can be obtained using “backward 

elimination” Draper and Smith, 1998 in which at each step the least important (non-

significant) body size and limb segment dimensions variable is dropped from the 

current model. Further categorical or group differences within the population, e.g. sex 
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and swim stroke, can be explored by allowing the constant intercept parameter “ln(a)” 

in Equation (2) to vary for each group (by introducing them as fixed factors and 

associated interactions within an ANCOVA). The significance level was set at P < 0.05. 

Practical importance (meaningfulness) was assessed by reporting effect sizes (partial 

eta squared = η2) as recommended by Winter, Grant, and Nevill (2014) 

Given that some swimmers contributed to more than one cohort (with measurements 

taken on different occasions), the data can be treated as repeated measurements with 

a hierarchical structure. For this reason, we repeated the above analysis using 

multilevel modelling with the statistical software MLwin that allows the different 

swimmers to be treated as the level 2 hierarchy and their different performance speeds 

to be at the level 1 hierarchy (see Watts, Coleman, & Nevill, 2012). 

Results 

The parsimonious solution to the backward elimination regression analysis of log-

transformed swim speed (Ln(SS)) resulted in the following multiple regressions 

model (Table 2): 

Table 2. The parsimonious solution to the backward elimination regression analysis to 
predict log-transformed swim speeds (Ln(SS)) given by Equation (2). 

Predictor variables B SE t Sig Lower Bound Upper Bound 

Front crawl-intercept Ln(a) -2.856 .784 -3.644 .000 -4.397 -1.314 
Breaststroke ALn(a) -.421 .910 -.463 .644 -2.212 1.369 
Butterfly ALn(a) -1.644 .824 -1.996 .047 -3.264 -.023 
Backstroke ALn(a) -2.499 .966 -2.587 .010 -4.399 -.599 
Male ALn(a) .033 .009 3.717 .000 .016 .051 
Ln(Body Fat) -.089 .018 -4.891 .000 -.125 -.053 
Ln(Lower arm length) -.247 .078 -3.178 .002 -.399 -.094 
Ln(Arm relaxed girth) -.272 .100 -2.716 .007 -.469 -.075 
Ln(Forearm girth) .409 .132 3.099 .002 .149 .669 
Ln(Biacromial breadth) .434 .094 4.602 .000 .249 .620 
Ln(Biiliac breadth) .171 .050 3.410 .001 .072 .269 
Ln(Arm span) .327 .087 3.761 .000 .156 .498 
Front crawl * age .002 .003 .569 .569 -.004 .008 
Breaststroke * age A .052 .011 4.822 .000 .031 .074 
Butterfly * age A .012 .004 2.811 .005 .004 .020 
Backstroke * age A .000 .009 .048 .962 -.018 .019 
Front crawl * Ln(Sitting height) .148 .197 .749 .455 -.240 .535 
Breaststroke * Ln(Sitting height) A -.317 .231 -1.376 .170 -.771 .136 
Butterfly * Ln(Sitting height) A .108 .216 .502 .616 -.316 .533 
Backstroke Ln(Sitting height) A .492 .291 1.690 .092 -.081 1.065 
Front crawl * Ln(Calf girth) A -.175 .160 -1.090 .276 -.490 .140 
Breaststroke * Ln(Calf girth) A .009 .230 .037 .970 -.444 .461 
Butterfly * Ln(Calf girth) A .689 .187 3.685 .000 .321 1.057 
Backstroke * Ln(Calf girth) A .199 .265 .751 .453 -.323 .721 
Front crawl * Ln(Ankle girth) .004 .173 .024 .981 -.337 .345 
Breaststroke * Ln(Ankle girth) A .254 .271 .936 .350 -.280 .787 
Butterfly * Ln(Ankle girth) A -.526 .208 -2.532 .012 -.935 -.117 
Backstroke * Ln(Ankle girth) A -.180 .234 -.771 .441 -.641 .280 

Values are means standard errors of estimate. Female front crawl swimmers were used as the reference group (baseline 
intercept measure Ln(a)) and other swim stroke 
groups were compared with it, indicated by (ALn(a)). 

 

The multiplicative allometric model relating 100-m swim speeds (m.s−1) to the predictor 

variables found the percentage body fat Ln(BF%) as the only “whole-body” predictor 

of Ln(SS) (body mass and stature were dropped from the analysis). Six other 
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predictors in addition to the percentage body fat (Ln(BF%)) were found to be 

significantly associated with Ln(SS), all found to be commonly associated with the four 

strokes. These were Ln(arm span), Ln(biacromial breadth), Ln(biiliac breadth), 

Ln(forearm girth), that were positively associated with SS, and Ln(lower arm length) 

and Ln(relaxed arm girth) that were both negatively associated with SS performance. 

Four other predictor variables were also found to be strongly associated with Ln(SS), 

BUT these associations varied significantly with the 4 different strokes. These were 

identified by introducing stroke-by-predictor variable interactions (see statistical 

methods). The 4 significant interactions were “stroke-by-age” (F3,335 = 9.068; 

η2 = 0.075, P < 0.001), “stroke-by-sitting height” (F3,335 = 4.12;; η2 = 0.036, P = 0.007), 

“stroke-by-calf girth” (F3,335 = 6.48;; η2 = 0.055, P < 0.001), and “stroke-by-ankle girth” 

(F3,335 = 4.59;; η2 = 0.040, P = 0.004) (see Table 2). Our allometric model also 

detected a significant sex difference with male swimmers able to swim 3.3% faster 

than female swimmers (Table 2). The adjusted coefficient of determination, adjusted 

R2 for the fitted multiplicative allometric model was 88.3% with the log-transformed 

error ratio being 0.068 or 7.08%, having taken antilogs. 

As stated in the methods, given that some of the swimmers contributed to more than 

one cohort, the hierarchical or repeated-measures nature of these data was re-

analysed using the multilevel modelling statistical software MLwin. The results are 

given in Table 3.
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Table 3. The parsimonious solution to the backward elimination regression analysis to 
predict log-transformed swim speeds (Ln(SS)) using 
multilevel modelling (MLwin). 

Predictor variables (fixed) B SE t Lower Bound Upper Bound 

Front crawl-intercept Ln(a) -2.813 0.414 -6.80 -3.624 -2.002 

Breaststroke ALn(a) -1.001 0.512 -1.96 -2.004 0.002 

Butterfly ALn(a) -1.821 0.429 -4.25 -2.662 -0.980 

Backstroke ALn(a) -2.508 0.659 -3.81 -3.800 -1.216 

Male ALn(a) 0.036 0.009 3.82 0.018 0.054 

Ln(Body Fat) -0.096 0.017 -5.56 -0.130 -0.062 

Ln(Lower arm length) -0.250 0.077 -3.23 -0.402 -0.098 

Ln(Arm relaxed girth) -0.195 0.094 -2.09 -0.378 -0.012 

Ln(Forearm girth) 0.324 0.112 2.90 0.105 0.542 

Ln(Biacromial breadth) 0.465 0.092 5.04 0.284 0.646 

Ln(Biiliac breadth) 0.142 0.051 2.79 0.042 0.242 

Ln(Arm span) 0.338 0.091 3.73 0.161 0.516 

Interactions with age      

Breaststroke * Aage 0.054 0.010 5.528 0.035 0.073 

Butterfly*Aage 0.012 0.003 4.361 0.007 0.018 

Backstroke * Aage 0.004 0.008 0.519 -0.011 0.020 

Interactions with Ln(Sitting height)      

Breaststroke * ALn(Sitting height) -0.124 0.113 -1.090 -0.346 0.099 

Butterfly*ALn(Sitting height) 0.255 0.096 2.660 0.067 0.443 

Backstroke ALn(Sitting height) 0.584 0.205 2.851 0.182 0.986 

Interactions with Ln(Calf girth)      

Breaststroke * ALn(Calf girth) -0.082 0.166 -0.495 -0.408 0.243 

Butterfly*ALn(Calf girth) 0.552 0.115 4.821 0.328 0.776 

Backstroke * ALn(Calf girth) 0.079 0.203 0.389 -0.319 0.477 

Interactions with Ln(Ankle girth)      

Breaststroke * ALn(Ankle girth) 0.269 0.194 1.389 -0.111 0.649 

Butterfly*ALn(Ankle girth) -0.524 0.111 -4.712 -0.742 -0.306 

Backstroke * ALn(Ankle girth) -0.188 0.147 -1.279 -0.475 0.100 

Random factors      

Variance (level 2 between subjects) 0.0017 0.0004 
   

Variance (level 1 within subjects) 0.0027 0.0003    

Values are means standard errors of estimate. Female and front-crawl swimmers were used as the reference group (baseline group) and male 

and all other swim strokes (intercepts and interactions) were compared with them, indicated by (A). 

 

 

Discussion 

There is compelling evidence that anthropometric and somatic characteristics play a 

key role in the early identification of talented/gifted athletes (Issurin, 2017). This is 

because such characteristics are more genetically determined and less trainable than 

most physical fitness attributes (Issurin, 2017). For instance, it has been established 

that anthropometrics such as body length (e.g., height, limb lengths and feet) are 

strongly determined by genetics (level of inherence of 70%) (Bouchard, Malina, & 

Perusse, 1997; Szopa, Mleczko, & Zychowska, 1999). The present study used an 

allometric modelling approach and ANCOVA to identify the optimal anthropometric, 

somatic and demographic characteristics (as covariates) associated with 100-m 

swimming performances (average speeds in m.s−1) in four swimming-stroke cohorts 

(back stroke, breast stroke, butterfly and front crawl) based in Tunisia. We recognise 

that some swimmers contributed to more than one cohort, so when we re-analysed 

the data using multilevel modelling that takes these repeated measurements into 

account, the results were remarkably similar (see Table 3 vs. Table 2) and our 

conclusions remained the same. For the sake of simplicity, we shall focus our 

discussion on the first of the two analyses (Table 2). 
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The results identified seven predictor variables that were common to all strokes (see 

Table 1) together with another 4 characteristics that would appear to benefit some 

strokes significantly more than others (identified by stroke-by-predictor variable 

interactions). The total explained variance of these predictor variables was 88.3% 

(adjusted R2) although we acknowledge that the majority of the effect sizes were 

relatively modest, between small and moderate (http://imaging.mrc-

cbu.cam.ac.uk/statswiki/FAQ/effectSize) 

Of the seven “common” predictor variables, percentage body fat (Ln(BF%)) was the 

single most important “whole-body” size characteristic (B = −0.089, SE = 0.018; P 

< 0.001). Unsurprisingly, having a lower BF% benefits all 4 strokes. Stature and body 

mass did not contribute significantly to the parsimonious allometric model, suggesting 

that the advantage of having longer levers and/or greater girth dimensions was “limb 

specific” rather than a more general whole-body advantage. 

The four positive “common” predictor variables associated with swim speed were 

Ln(arm span), Ln(biiliac breadth) or hip width in layman’s terms, Ln(biacromial 

breadth) or shoulder width in layman’s terms, and Ln(forearm girth). The two negative 

“common” characteristics associated with swim speed were Ln(lower-arm length) and 

Ln(arm-relaxed girth). Taken together, swimmers from all four strokes appear to 

benefit from broad shoulders and hips, a greater arm span (but with relatively short 

lower arms) and greater forearm girths but smaller relaxed arm girths. 

Having taken anti-logs, the two common “arm length” predictors can be combined for 

form an “arm span”-by-“lower arm” ratio given by the ratio = (arm span)^0.327/(lower 

arm length)^0.247 (see Table 2 for exponents) that highlights the advantage of having 

a greater arm span but also highlights a possible disadvantage of having a too greater 

lower-arm length. Similarly, the two common arm girth predictors can be combined to 

form a common “arm-girth” ratio given by the ratio = (forearm girth)^0.409/(relaxed 

arm girth)^0.272 (see Table 2 for the exponents). This ratio was also identified by 

Sammoud et al. (2019) as key to backstroke swimming performance. The authors 

suggested that the “arm girth” ratio was possibly reflecting a measure of muscularity, 

i.e., with the muscularity component resulting from the flexed vs. non-flexed girth ratio. 

However, from a talent identification point of view, the 4 stroke-by-predictor variable 

interactions provide the most illuminating new insights. The significant stroke-by-sitting 

height interaction reveals that backstroke swimmers have the longest sitting heights, 

a finding that is in direct contrast to the breaststroke swimmers who have the shortest 

sitting heights. Sammoud et al. (2019) had already reported a similar finding when 

identifying key somatic variables associated with young backstroke swimmers, 

likening the sitting height of a swimmer with the length of a boat’s hull. It is well known 

that boats with longer hulls travel faster through the water (Charles, 2010). The 

analogy implied here to backstroke swimming performance is that the longer sitting-

height component of the skeleton will also reflect the benefits of a longer boat’s hull 
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when travelling through the water (although this analogy is not unanimously accepted 

since backstroke, being a rotational stroke along the longitudinal axis, and 

breaststroke, being a rotational stroke along the transverse axis, have fundamentally 

different dynamics). 

The stroke-by-calf girth interaction together with the stroke-by-ankle girth interaction 

can also be considered operating together. Inspection of the two interactions in Table 

2 reveals that the stroke associated with greatest calf girth is also the stroke with the 

smallest ankle girth, namely the butterfly. Again having taken antilogs, butterfly 

swimmers are characterized by having the greatest “calf girth”-to-“ankle girth” ratio, 

given by (calf girth)^0.515/(ankle girth)^0.522. We can speculate that this ratio is likely 

to reflect the greater muscularity in the lower leg associated with butterfly swimmers. 

However, the ratio is specific to butterfly swimmers alone and cannot be considered 

as an important indicator of swimmers from the other three strokes. 

The regression analysis also identified a significant stroke–by-age interaction (see 

Table 2). In our original model specification, see the statistical methods section 

(Equation (1)), we anticipated a curvilinear association between swim speed and age, 

justified by the apparent curvature observed in Figure 1 and the necessity to include 

the quadratic age terms in Equation (1). In reality, much of the apparent curvature can 

be explained by the different age slopes observed for the different strokes, with the 

steepest slope observed in breaststroke swimmers and the shallowest slope identified 

with the front crawl swimmers, see Figure 1. 

Conclusion 

In summary, the present study revealed 7 “common” characteristics that benefit all 

swimmers, and 4 other characteristics that benefit some but not all swimmers. Taken 

together, the 7 “common” characteristics suggest that all swimmers benefit from 

having less body fat, broad shoulders and hips, a greater arm span (but shorter 

lower arms) and greater forearm girths with smaller relaxed arm girths. The 4 stroke-

specific characteristics reveal that backstroke swimmers benefit from longer backs, a 

finding that can be likened to boats with longer hulls also travel faster through the 

water. The stroke-by-calf girth and the stroke-by-ankle girth interactions taken 

together identified butterfly swimmers with having the greater calf girths but also the 

smaller ankle girths, i.e., faster butterfly swimmers are characterized by greater 

muscularity in the lower legs. These results highlight the importance of considering 

key somatic characteristics of young swimmers for talent identification purposes (i.e., 

to ensure that swimmers realize their most appropriate strokes). 
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