This is the authors accepted manuscript of an article accepted for publication in Medicine & Science in Sports & Exercise (In Press). The final published version is available from https://doi.org/10.1249/MSS.00000000002771.

Title page

How *should* adult handgrip strength be normalized? Allometry reveals new insights and associated reference curves.

Authors

Alan M Nevill *; email: <u>a.m.nevill@wlv.ac.uk</u> (ORCID: 0000-0003-0506-3652)

Grant R. Tomkinson^{2,3}*; email: grant.tomkinson@und.edu (ORCID: 0000-0001-7601-9670)

Justin J. Lang^{4,5}; email: <u>iustin.lang@canada.ca</u> (ORCID: 0000-0002-1768-319X)

Wyatt Wutz²; email: <u>wyatt.wutz@und.edu</u>

Tony D. Myers⁶; email: <u>tonv.mvers@staff.newman.ac.uk</u> (ORCID: 0000-0003-4516-4829)

Institutional affiliations

¹Faculty of Education, Health and Wellbeing, University of Wolverhampton, Walsall Campus, Walsall, UK.

² Department of Education, Health and Behavior Studies, University of North Dakota, Grand Forks, ND, USA.

³Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia.

⁴Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, ON, Canada.

⁵ School of Mathematics and Statistics, Faculty of Science, Carleton University, Ottawa, ON,

Canada

⁶Sport and Health, Newman University, Birmingham, UK.

Running title

How should handgrip strength be normalized?

Corresponding author

Dr. Grant R. TOMKINSON *

Department of Education, Health and Behavior Studies

University of North Dakota

2751 2nd Avenue North, Stop 8235 Grand Forks, ND, 58202, USA

圖+1 701-777-4041

𝔅 grant.tomkinson@und.edu

Abstract

Introduction: Handgrip strength (HGS) is an important indicator of health. Because HGS is strongly associated with body size, most investigators normalize HGS for some measure of body size as a more sensitive indicator of strength within a population. We aimed to (1) identify the optimal body size dimension to remove (normalize) HGS for differences in body size among adults, and (2) generate norm-referenced centiles for HGS using the identified body size dimension.

Methods: Data were from the National Health and Nutrition Examination Survey (NHANES), a representative sample of the U.S. non-institutionalized civilian population. Exclusions resulted in a final sample of 8690 adults aged 20 years and older. HGS was measured using handheld dynamometry. Body size dimensions included body mass, height, and waist circumference. The most appropriate dimension(s) associated with HGS were identified using allometry. We fitted centile curves for normalized HGS using the Generalized Additive Model for Location, Scale, and Shape (GAMLSS).

Results: Findings suggest that neither body mass nor body mass index is appropriate to normalize HGS. Incorporating all three body size dimensions of body mass, height, and waist circumference, or the reduced sub-sets of body mass and height, or height alone, suggest that the most appropriate normalizing (body size) dimension associated with HGS should be a cross-sectional or surface area measure of an individual's body size (i.e., L^2 , where L is a linear dimension of body size). Given that height was also identified as the signally best body size dimension associated with HGS, we recommend HGS be normalized by height² (i.e., HGS/HT^2). Centile curves for HGS/HT^2 by age group and gender were therefore provided.

Conclusion: Scaling HGS by height² may help normalize strength for population-based research.

Key words

Hand strength, body size, adult, nutrition surveys, cross-sectional studies, waist circumference.

1 Introduction

2 Muscle strength, assessed by handgrip strength (HGS) using isometric dynamometry, is 3 considered a powerful marker of current and future health (1-5). Low adult HGS is significantly 4 associated with an increased risk of all-cause, cardiovascular, and non-cardiovascular mortality 5 (3, 6), stroke (3), several cancers (including colorectal, lung, and breast cancer) (6), chronic 6 obstructive pulmonary disease (6), type 2 diabetes (7), fractures (8), cognitive declines 7 (including dementia) (8), and functional disability (9). Low HGS is also part of decision 8 algorithms and assessment criteria for determining sarcopenia (10), dynapenia (11), and frailty 9 (12). HGS is easy, affordable and safe to assess (13), has moderate-to-high construct validity 10 with total body and knee extensor strength (14), and high-to-very high test-retest reliability (15). 11 It is for these reasons, why HGS is widely used to determine strength capacity in clinical and 12 epidemiological settings, and for population health surveillance (16).

13

However, HGS is strongly and positively associated with body size, with taller and/or heavier 14 15 individuals having greater HGS. For this reason, most investigators report HGS both in absolute 16 units (usually kg) and normalized for some measure of body size, as a more sensitive indication 17 of strength capacity within a population where sub-groups are known to vary in body size (e.g., 18 gender, race). Various normalizing methods have been used to adjust HGS for differences in 19 body size. Most investigators have normalized HGS to body mass (17-24), some have 20 normalized to body mass index (BMI) (23-26), while few have normalized to other measures of 21 body size (e.g., height) (22, 23). The process of normalizing variables such as HGS per body 22 mass (an index known as a ratio standard) has come under strong criticism in the past, a point 23 originally made by Tanner (27) and subsequently by Nevill et al. (28). Indeed, focusing on

scaling HGS specifically, Kiilkamp et al. (29) confirmed that HGS should not be normalized by
dividing HGS by the entire body mass in both judo athletes and non-athletes. Nevertheless, such
ratio standards, using HGS per body mass or HGS per BMI to normalize HGS data, have been
used to develop nationally-representative norm-referenced centiles (21, 25) and criterionreferenced health-related cut-points (17, 23). This inconsistency in normalization approaches
prompts the obvious research question, "How should HGS be normalized for differences in body
size?"

Hence, the purposes of the current study are twofold. Using a nationally representative sample of 32 33 Americans aged 20 years and older, we aimed to (1) identify, using allometric scaling, which body size dimension is optimal to remove (adjust/normalize) HGS for differences in body size, 34 and (2) to generate norm-referenced centile data for normalized HGS estimated using the 35 36 generalized additive model for location, scale, and shape (GAMLSS) (30). We hypothesized that 37 the most appropriate body size dimension associated with HGS was likely to be a cross-sectional area of body size such as body mass ($M^{0.67}$), see for example, Kiilkamp et al. (29) when 38 39 normalizing HGS and Nevill et al. (28) when normalizing maximal oxygen uptake for 40 differences in body size.

41

42 Methods

43 Participants

44 We used data from the 2011-12 and 2013-14 cycles of the National Health and Nutrition

45 Examination Survey (NHANES) dataset, which used a complex multistage probability design to

46 assess the health and nutrition status of a representative sample of the U.S. non-institutionalized

47	civilian population (31). These cycles of the NHANES were selected because they included
48	measures of HGS. Written informed consent was provided by participants and the National
49	Center for Health Statistics Research Ethics Review Board approved NHANES protocols
50	(Protocol #2011-17). We did not seek additional approval because the data used in this
51	study were free from personal identifiers.
52	
53	While NHANES recruited participants aged 6 years and older, we only used data on adults aged
54	20 years and older (20-80+ years, with adults aged 80 years and over top-coded in the NHANES
55	at 80 years of age) in this study. Of the initial 19,931 participants, 10,988 were excluded because
56	they: (a) were younger than 20 years (n=8602), (b) were pregnant (n=174), (c) performed the
57	HGS assessment seated (due to physical limitations) 386), (d) were not assessed for HGS with
58	both hands ($n=1539$), or (e) had missing data (e.g., body mass, height, waist circumference)
59	(n=287). In addition, following the procedures of Wang et al. (32) we excluded a further 253
60	participants as outliers because their bilateral HGS asymmetry was >30%. These exclusions
61	resulted in a final sample of 8690 adults aged 20 years and older.
62	
63	Measures

The HGS and anthropometry protocols are described in detail elsewhere (33-36). HGS was measured using Takei digital handgrip dynamometer (Model T.K.K.5401, Takei Scientific Instruments, Niigata City, Japan). Participants were randomly assigned to start the HGS test with their right or left hand, with the dynamometer adjusted for hand size by ensuring that the middle phalange of each participant's index finger was bent to 90° and rested flat atop of the handle. A sub-maximal effort practice trial was performed to ensure the dynamometer was properly adjusted for hand size and to confirm understanding of the HGS protocol. Participants stood
upright (unless they were physically limited), with their feet hip width apart, their arm extended
and hanging down away from their body, and squeezed the dynamometer with maximal effort.
Three trials were performed for each hand, alternating hands between trials, with 60 seconds of
rest between measures on the same hand. The coefficient of variation across the three trials was
8.2%, equivalent to a typical error of 2.8 kg. For this study, HGS was taken as the average of the
maximum score attained for each hand.

77

Standing height was measured using a fixed stadiometer with an adjustable headboard. Body
mass was measured using a Mettler Toledo digital weight scale (Mettler-Toledo, Columbus, OH,
USA). Waist circumference was measured at end-tidal expiration using a steel measuring tape
placed directly on the skin at the level of the superior lateral border of the iliac crests.
Participants self-reported their age and gender.

83

84 Statistical analyses

To obtain nationally representative estimates, analyses were conducted using NHANES sample weights (survey, strata, and cluster weights), which account for the complex survey design (including oversampling), survey non-response, and post-stratification. To identify the most appropriate body size dimension(s) associated with HGS, we developed the following multiplicative model with allometric body size components, similar to that used to model the physical performance variables of Greek children (37), Peruvian children (38), and older adults (39).

92
$$HGS = a \cdot M^{k_1} \cdot HT^{k_2} \cdot WC^{k_3} \cdot \varepsilon$$

93 where 'a' is the scaling constant and k_1, k_2 , and k_3 are scaling exponents for the body mass (M), height (HT), and waist circumference (WC) respectively, and e is the multiplicative error ratio 94 (28). Note that the multiplicative error ratio 's' assumes that the error will increase in proportion 95 96 to body size, a characteristic in data known as heteroscedasticity that can be controlled by taking 97 logarithms, as described below. Age and gender were incorporated into the model by allowing 'a' 98 to vary for either gender and each age group (age categories 20-29 years, 30-39 years, ..., 80 years 99 and over) to accommodate the likelihood that HGS may rise and then peak sometime during 100 middle age and decline thereafter. The model can be linearized with a log-transformation, and 101 multiple regression/ANCOVA can be used to estimate the body mass and height exponents for HGS having controlled for both age and gender (Eq. 2). In effect, log-transformed HGS becomes 102 103 the dependent variable, with age and gender incorporated as fixed factors with log(M) 104 and log(HT) entered as the covariates. $log(HGS) = log(a) + k_1 \cdot log(M) + k_2 \cdot log(HT) + k_3 \cdot log(WC) + log(\varepsilon) (2)$ 105 Traditionally, R² is used to measure goodness of fit. However, higher R² values do not always 106 indicate a better fit. Higher R² can indicate overfitting and adding noise variables will also inflate 107 R^2 . While R^2 is useful, it is not necessarily the best method of comparing competing models. An

108

109 alternative method of model comparison is to use the Akaike information criterion (AIC) that can

110 be conceptualized as a "distance" or error between the data and a model, with lower values

indicating a better model. Unlike R², which rewards models for being more complex (i.e., having 111

112 more noise variables) with a higher value being better, AIC penalizes models for being more

113 complex with a lower value being better. As a result, model comparison (goodness-of-fit) between

114 the allometric models and the equivalent linear, additive models was assessed using the AIC. The

115 difference between two AIC values was interpreted as negligible (<2), moderate (>2 and <6), strong (>6 and <10), or very strong (>10) evidence for the model with the lower AIC value being
better.

118

119 *Methods for developing the centile curves*

Using a group of models called Generalized Additive Model for Location, Scale and Shape 120 121 (GAMLSS) (30), we fitted centile curves for the most appropriate normalized HGS ratio (to be 122 identified in the results section) by age and gender. Using this approach, we were able to fit 123 different response distributions and different nonparametric smoothing functions (cubic splines, P-124 splines, and local polynomial regression). The response distributions fitted included the Box- Coxt, Box-Cox Cole and Green, and Box-Cox Power Exponential. Each model included NHANES 125 126 sample weights to adjust the dependent variable for oversampling and to better estimate population parameters. We selected the best fitting models using scaled AIC values (40), which 127 128 ranks models according to their relative importance. The Box-Cox-t (p, o, v, x) power 129 transformation produced the best fit for both males and females. This distribution was defined by Yv having a shifted truncated t distribution with x degrees of freedom, is a four-parameter 130 distribution, which includes location (p) the median of the distribution, scale, sigma (a), 131 132 approximately the coefficient of variation, nu (v) the controls for skewness (the transformation to 133 symmetry), and tau (x) the kurtosis of the distribution (30). 134

The effects and covariates assessed using the ANCOVAs were considered significant at p<0.05.
All statistical analyses were conducted in IBM SPSS Statistics (v26, IBM, Chicago, IL, USA),
except for the centile curves which were conducted in R (v4.0.2 (41)). We used the GAMLSS
package to fit centile curves (30). Post-estimation diagnostics for these models included standard

139	QQ-plots, de-trended normal QQ-plots (worm plots (42)) and transformed Owen's plots, to check
140	the age-conditional normality of the transformed data (43).

Results

143	To illustrate the strong and positive association between HGS and body size (r=0.73, p<0.001),
144	the HGS of U.S. men and women were plotted against height in Figure 1. This figure provides
145	evidence that the errors increase with height, a characteristic in data known as heteroscedasticity
146	that can be controlled by taking logarithms as described previously in the methods section.
147	***Insert Figure 1 here***
148	The ANCOVA analysis of log-transformed HGS identified the main effects of gender and age as
149	significant (age and gender; both p<0.001) but not the age-by-gender interaction (p>0.05). The
150	main effects of age and gender are shown in Figure 2.
151	***Insert Figure 2 here***
152	The ANCOVA analysis also revealed that all three body size covariates were significant (Table
153	1). Note that fitted body mass (M) and height (HT) exponents are both positive but waist
154	circumference (WC) is negative, confirming that greater body mass and height benefit HGS but
155	excess waist circumference is detrimental to HGS.
156	***Insert Table 1 here***
157	If waist circumference were unavailable, the reduced body mass and height allometric model
158	covariates for HGS are given in Table 2.
159	***Insert Table 2 here***
160	Finally, examining the log-transformed body size covariates in Table 2, the height covariate
161	log(HT) appears to be the dominant body size dimension associated with HGS (t score is nearly

162	twice as large as that associated with body mass). For this reason, we re-ran the ANCOVA
163	analysis, using a simplified/reduced allometric model (Eq. 2), excluding $\log(M)$ and $\log\{WC\}$.
164	The follow-up analysis revealed the height covariate as highly significant (Table 3), but the fitted
165	height (HT) exponent was very close to 2 (i.e., HT^2), suggesting that if we were to use height
166	alone, HGS should be normalized by dividing HGS by HT^2 .
167	***Insert Table 3 here***
168	Note that the simplified ANCOVA analysis of log-transformed HGS also confirmed very similar
169	age and gender main effects as those reported Figure 2, with main effects for both age and gender
170	significant (p<0.001) but not the age-by-gender interaction (p>0.05) (Figure 3).
171	***Insert Figure 3 here***
172	To assess the benefit of using allometric scaling to determine the appropriate body size
173	dimension to normalize HGS as independent of body size, we calculated the AIC for the above
174	log model 3 and compared it with the AIC obtained from fitting the equivalent linear, additive
175	models using Height and Height ² as covariates. The AIC for the allometric (log-linear) model 3
176	was 57256. When we fitted the equivalent linear additive model to predict HGS (using the fixed
177	factors gender and age group plus the gender-by-age group interaction) but allowing height or
178	height ² as the covariates, the AICs were 58333 and 58312, respectively. Clearly the AIC
179	associated with allometric Model 3 (AIC=57256) is vastly superior to the equivalent linear,
180	additive models AIC =58333 and 58312 (differences >1000), respectively, evidence for very
181	strong differences.
182	
183	The centile curves for the HGS/HT^2 by age are given for males and females separately in Figure
184	4.

185

Insert Figure 4 here

186	These curves enable the reader to estimate an individual's normalized HGS (HGS/HT^2) using a
187	nationally-representative sample of American adults for comparative purposes. These centile
188	curves provide a straightforward interpretation and add a valuable level of precision. For
189	example, in the case of an individual's HGS/HT^2 slope and age, if their estimate is on the 75 th
190	centile, it means that for every 100 individuals of the same age, 75 would have a lower HGS/HT^2
191	slope and 25 a higher HGS/HT^2 slope. Point-estimate centile tables by age for males and females
192	are also given in Table 4.
193	***Insert Table 4 here***
194	
195	DISCUSSION
196	Our initial findings, obtained by fitting the multiplicative allometric model log-transformed (Eq.
197	2) with all three body size terms, suggest that to obtain a normalized HGS_n independent of body
198	mass, height, and waist circumference, we need to calculate the normalized ratio
199	$HGS_n = HGS/(HT^{0.968} \cdot M^{0.577} \cdot WC^{-0.619}) $ (3)
200	see the exponents reported in Table 1. Physiologically this finding makes perfect sense. Taken
201	together, the body mass and waist circumference terms ($M^{0.577} \cdot WC \sim^{0.619}$) suggest a body mass
202	divided by WC ratio, where the latter is likely to reflect a measure of adiposity providing a ratio
203	likely to be a proxy for lean body mass. The height term will reflect an advantage that a taller
204	individual will be able to exert on the handheld dynamometer, probably due to the mechanical
205	advantage of having longer levers.
206	

207	The fitted exponents in the model (Table 1) are also entirely compatible from dimensional
208	considerations, as anticipated by Astrand and Rodahl (44). In their chapter on body dimensions
209	and muscular exercise, Astrand and Rodahl (44) reported that force should scale to the
210	physiological dimension of L^2 , where L is a linear dimension of body size. Using L as the
211	common linear body size dimension (e.g., body mass, $M = L^3$), the HGS denominator becomes
212	$(HT^{0.968} \cdot M^{0.577} \cdot WC^{-0.619}) = L^{0.968} \cdot (L^3)^{0.577} \cdot L^{-0.619} = L^{0.968} \cdot L^{1.731} \cdot L^{0.619} = L^{2.086}$, or
213	approximately L ² . This is equivalent to a body surface or cross-sectional area, suggesting that
214	HGS is associated with, or proportional to, muscle cross-sectional area. Many muscle
215	physiologists might well have anticipated and approved of this dimensional interpretation.
216	
217	Based on the reduced body mass and height allometric model (Table 2), to obtain a normalized
218	HGS _n independent of body mass and height, we need to calculate the normalized ratio
219	$HGS_n = HGS/(HT^{1.438} \cdot M^{0.164}) \tag{4}$
220	The fitted exponents from the reduced-model covariates can also be interpreted from the above
221	dimensional considerations. The body mass and height exponents are $(HT^{1.438} \cdot M^{0.164}) =$
222	$L^{1.438} \cdot (L^3)^{0.164} = L^{1.438} \cdot L^{0.492} = L^{1.93}$, again approximately L^2 .
223	
224	Finally, using the simplified/reduced allometric model (Eq. 2), incorporating only log-
225	transformed height $\log(HT)$ (excluding $\log(M)$ and $\log(WC)$), the fitted height (HT)
226	exponent was 1.752 (see the parameters in Table 3), again close to 2, suggesting that if we were
227	to use height alone, HGS should be normalized to HT^{1752} as follows,
228	$HGS_n = HGS/(HT^{1.752} $ (5)

a finding that is remarkably similar to the result reported by Neto et al. (22) who recommended
 that HGS of older adults should be normalized using absolute HGS divided by height¹⁸⁴.

231

232 These results, using allometric models, suggest that the most appropriate body size components 233 that will optimally remove the effect of body size when normalize HGS, should include all three 234 terms body mass, height, and waist circumference, as given by Eq. 3. These results also suggest 235 that investigators who normalize HGS using either body mass (17-24) and/or BMI (23-26) are 236 probably using inappropriate normalizing body size terms. Clearly, if body mass and height are to be used, they should be combined by multiplying the M and terms together ($^{38}M^{0164}$), see Eq. 237 4, not dividing body mass (M) by height (HT^2) as is the case when using BMI (kg.nT²) to 238 normalize HGS. Furthermore, if only one body size component were to be used to normalize 239 HGS, height (HT^{1752}) is considerably more successful than body mass (M) at removing the 240 body size/dimensional effect when normalizing HGS. 241

242

We recognize that these fitted exponents adopted in the normalizing equations 3, 4, and 5 above are all "sample specific". That is, they are likely to work well for American adults, and even though they are both physiologically and dimensionally sound, they are unlikely to be equally successful with, and generalizable to, other populations. This was illustrated perfectly when we compare the fitted denominator exponent HT^{1752} reported in Eq. 5, with the same model adopted by Neto et al. (22) for older Brazilian adults, given as HT^{184} .

249

However, when normalizing HGS, we need a *simple* methodology that is likely to be

251 "generalizable" to all populations. The one consistent and robust finding from the above

allometric models, was that the normalizing (body size) dimension associated with HGS was given by L^2 (a cross-sectional or surface area). Furthermore, given that we were able to confirm that height (HT^2) was the single best body size dimension associated with HGS, we recommend, in response to the question posed in the title, that HGS should be normalized by dividing HGS by height (HT^2).

257

258 Our findings have several implications. First, several studies investigating the associations 259 between HGS and health have used scaling approaches that are not optimal. There is a need for future research to determine if using HT^2 to normalize HGS impacts these associations. Second, 260 261 to improve comparability throughout the literature, we also recommend reporting raw HGS 262 values (i.e., in the measured units) in addition to normalized HGS values, when possible. Last, 263 we recommend using a quintile framework to facilitate the interpretation of these HGS centiles, similar to previous studies (e.g., 45). For instance, adults below the 20th centile can be considered 264 as having 'very low' HGS; between the 20th and 40th centiles as having Tow' HGS; between the 265 40th and 60th centiles as having 'moderate' HGS; between the 60th and 80th centiles as having 266 'high' HGS; and above the 80th centile as having 'very high' HGS. 267

268

269 Conclusions

HGS is considered an important indicator of health. However, because HGS is strongly
associated with body size, most investigators report HGS normalized for some measure of body
size as a more sensitive indication of strength capacity of individual within a population. Some
investigators choose to normalize HGS per unit of body mass (kg) whilst others normalize per
unit BMI (kg.m^{"2}). The current study suggests that neither body mass nor BMI are appropriate to

275	normalize HGS. Incorporating all three body size dimensions of body mass, height and waist				
276	circumference, or the reduced sub-sets of body mass and height, or height alone, suggests that the				
277	most appropriate normalizing (body size) dimension associated with HGS should be a cross-				
278	sectional or surface area measure of body size (i.e., L^2 , where is a linear dimension of body size).				
279	Given that height was also identified as the signally best body size dimension associated with				
280	HGS, we recommend HGS be normalized by dividing HGS by height ² (HGS/HT^2).For this				
281	reason, the centile curves for the HGS/HT^2 by age (20-29 years, 30-39 years,, 80 years and				
282	over) are given separately for males and females in the study. Future research should confirm				
283	these results in other countries, preferably using nationally-representative data.				
284					
285	Acknowledgements				
286	Conflicts of interest and sources of funding				
287	The authors declare no conflicts of interest or external funding or sponsorship related to this				
288	study. The results of this study do not constitute an endorsement by the American College of				
289	Sports Medicine. The results of this study are presented clearly, honestly, and without				
290	fabrication, falsification, or inappropriate data manipulation.				

291	Refere	ences
292	1.	Cruz-Jentoft AJ, Bahat G, Bauer J et al. Sarcopenia: revised European consensus on
293		definition and diagnosis. Age and Ageing. 2019;48(1):16-31.
294	2.	García-Hermoso A, Ramírez-Campillo R, Izquierdo M. Is muscular fitness associated
295		with future health benefits in children and adolescents? A systematic review and meta-
296		analysis of longitudinal studies. Sports Medicine. 2019;49(7):1079-94.
297	3.	Leong DP, Teo KK, Rangarajan S et al. Prognostic value of grip strength: findings from
298		the Prospective Urban Rural Epidemiology (PURE) study. The Lancet.
299		2015;386(9990):266-73.
300	4.	McGrath RP, Kraemer WJ, Al Snih S, Peterson MD. Handgrip strength and health in
301		aging adults. Sports Medicine. 2018;48(9):1993-2000.
302	5.	Ortega FB, Silventoinen K, Tynelius P, Rasmussen F. Muscular strength in male
303		adolescents and premature death: cohort study of one million participants. BMJ.
304		2012;345:e7279.
305	6.	Celis-Morales CA, Welsh P, Lyall DM et al. Associations of grip strength with
306		cardiovascular, respiratory, and cancer outcomes and all cause mortality: prospective
307		cohort study of half a million UK Biobank participants. BMJ. 2018;361.
308	7.	Tarp J, Støle AP, Blond K, Grøntved A. Cardiorespiratory fitness, muscular strength and
309		risk of type 2 diabetes: a systematic review and meta-analysis. Diabetologia.
310		2019;62(7):1129-42.
311	8.	Cooper R, Kuh D, Cooper C et al. Objective measures of physical capability and
312		subsequent health: a systematic review. Age and ageing. 2011;40(1):14-23.

211		handarin strongth and advarsa health conditions? A tonical review SACE Open
514		handgrip strength and adverse health conditions? A topical review. SAGE Open
315		Medicine. 2020;8:2050312120910358.
316	10.	Cruz-Jentoft AJ, Sayer AA. Sarcopenia. The Lancet. 2019;393(10191):2636-46.
317	11.	Manini TM, Clark BC. Dynapenia and aging: an update. Journals of Gerontology Series
318		A: Biomedical Sciences and Medical Sciences. 2012;67(1):28-40.
319	12.	Fried LP, Tangen CM, Walston J et al. Frailty in older adults: evidence for a phenotype.
320		The Journals of Gerontology Series A: Biological Sciences and Medical Sciences.
321		2001;56(3):M146-M57.
322	13.	Suni JH, Miilunpalo SI, Asikainen T-M et al. Safety and feasibility of a health-related
323		fitness test battery for adults. Physical Therapy. 1998;78(2):134-48.
324	14.	Bohannon RW, Magasi SR, Bubela DJ, Wang YC, Gershon RC. Grip and knee extension
325		muscle strength reflect a common construct among adults. Muscle & Nerve.
326		2012;46(4):555-8.
327	15.	Bohannon RW, Bubela DJ, Magasi SR, Gershon RC. Relative reliability of three
328		objective tests of limb muscle strength. Isokinetics and Exercise Science. 2011;19(2):77-
329		81.
330	16.	Lang JJ, Smith J, Tomkinson GR. Global surveillance of cardiorespiratory and
331		musculoskeletal fitness. In: Brusseau TA, Fairclough S, Lubans DR editors. The
332		Routledge handbook of youth physical activity. New York: Routledge; 2020, pp. 47-68.
333	17.	Brown EC, Buchan DS, Madi SA, Gordon BN, Drignei D. Grip strength cut points for
334		diabetes risk among apparently healthy US adults. American Journal of Preventive
335		Medicine. 2020;58(6):757-65.

McGrath R, Johnson N, Klawitter L et al. What are the association patterns between

313

9.

336	18.	Hu S, Gu Y, Lu Z et al. Relationship between grip strength and prediabetes in a large-
337		scale adult population. American Journal of Preventive Medicine. 2019;56(6):844-51.
338	19.	McGrath RP, Vincent BM, Snih SA et al. The association between handgrip strength and
339		diabetes on activities of daily living disability in older Mexican Americans. Journal of
340		Aging and Health. 2018;30(8):1305-18.
341	20.	Peterson MD, Duchowny K, Meng Q, Wang Y, Chen X, Zhao Y. Low normalized grip
342		strength is a biomarker for cardiometabolic disease and physical disabilities among US
343		and Chinese adults. Journals of Gerontology Series A: Biomedical Sciences and Medical
344		Sciences. 2017;72(11):1525-31.
345	21.	Peterson MD, Krishnan C. Growth charts for muscular strength capacity with quantile
346		regression. American Journal of Preventive Medicine. 2015;49(6):935-8.
347	22.	Neto GAM, Oliveira AJ, de Melo Pedreiro RC et al. Normalizing handgrip strength in
348		older adults: An allometric approach. Archives of Gerontology and Geriatrics.
349		2017;70:230-4.
350	23.	Manini TM, Patel SM, Newman AB et al. Identification of sarcopenia components that
351		discriminate slow walking speed: a pooled data analysis. Journal of the American
352		Geriatrics Society. 2020;68(7):1419-28.
353	24.	Whitney DG, Peterson MD. The association between differing grip strength measures and
354		mortality and cerebrovascular event in older adults: National Health and Aging Trends
355		Study. Frontiers in Physiology. 2019;9:1871.
356	25.	McGrath R, Hackney KJ, Ratamess NA, Vincent BM, Clark BC, Kraemer WJ. Absolute
357		and body mass index normalized handgrip strength percentiles by gender, ethnicity, and
358		hand dominance in Americans. Advances in Geriatric Medicine and Research. 2020;2(1).

- McLean RR, Shardell MD, Alley DE et al. Criteria for clinically relevant weakness and
 low lean mass and their longitudinal association with incident mobility impairment and
- 361 mortality: the foundation for the National Institutes of Health (FNIH) sarcopenia project.
- 362 *J Gerontol A Biol Sci Med Sci.* 2014;69(5):576-83.
- Johnson CL, Dohrmann SM, Burt VL, Mohadjer LK. National health and nutrition
 examination survey: sample design, 2011-2014. *Vital Health Stat* 2. 2014;(162):1-33.
- 365 28. (CDC) CfDCaP. National Health and Nutrition Examination Survey (NHANES): muscle
 366 strength procedures manual. In: 2011-2012.
- 367 29. (CDC) CfDCaP. National Health and Nutrition Examination Survey (NHANES):
 368 anthropometry procedures manual. In: 2011-2012.
- 369 30. (CDC) CfDCaP. National Health and Nutrition Examination Survey (NHANES):
 anthropometry procedures manual. In: 2013-2014.
- 371 31. (CDC) CfDCaP. National Health and Nutrition Examination Survey (NHANES):
 372 anthropometry procedures manual. 2013.
- 373 32. Nevill A, Tsiotra G, Tsimeas P, Koutedakis Y. Allometric associations between body
- 374 size, shape, and physical performance of Greek children. *Pediatric exercise science*.
 375 2009;21(2):220-32.
- 376 33. Bustamante Valdivia A, Maia J, Nevill A. Identifying the ideal body size and shape
 377 characteristics associated with children's physical performance tests in P eru.
- 378 *Scandinavian Journal of Medicine & Science in Sports.* 2015;25(2):e155-e65.
- 37934.Nevill A, Duncan M, Cheung DS, Wong AS, Kwan RYC, Lai CK. The use of functional
- 380 performance tests and simple anthropomorphic measures to screen for comorbidity in
- primary care. *International Journal of Older People Nursing*. 2020;15(4):e12333.

382	35.	Nevill AM, Ramsbottom R, Williams C. Scaling physiological measurements for
383		individuals of different body size. European Journal of Applied Physiology and
384		Occupational Physiology. 1992;65(2):110-7.
385	36.	McLean R. R. SMD, Alley D.E., Cawthon P.M., Fragala M.S, Harris TB, Kenny AM,
386		Peters KW, Ferrucci L, Guralnik J.M.,, Kritchevsky S.B, Kiel DP, Vassileva MT, Xue
387		Q.L, Perera S, Studenski S.A., Dam T.T. Criteria for clinically relevant weakness and low
388		lean mass and their longitudinal association with incident mobility impairment and
389		mortality: The Foundation for the National Institutes of Health (FNIH) Sarcopenia
390		Project. The Journals of Gerontology Series A: Biological Sciences and Medical
391		Sciences. 2014;69(5):576-83.
392	37.	Burnham KP, Anderson DR. A practical information-theoretic approach. Model Selection
393		and Multimodel Inference. 2002;2.
394	38.	Stasinopoulos MD, Rigby RA, Bastiani FD. GAMLSS: a distributional regression
395		approach. Statistical Modelling. 2018;18(3-4):248-73.
396	39.	van Buuren S, Fredriks M. Worm plot: a simple diagnostic device for modelling growth
397		reference curves. Statistics in Medicine. 2001;20(8):1259-77.
398	40.	Owen AB. Nonparametric likelihood confidence bands for a distribution function.
399		Journal of the American Statistical Association. 1995;90(430):516-21.

Figure captions

Figure 1. The association between handgrip strength (kg; average of the combined maximum score attained for each hand) and height (m) by gender.

Figure 2. The means (\pm SE) of log-transformed handgrip strength adjusted for log(*M*), log(*HT*) and log(*WC*) by age group and gender.

Figure 3. The means (\pm SE) of log-transformed handgrip strength adjusted for log(*HT*) alone by age group and gender.

Figure 4. The centile curves for normalized handgrip strength (handgrip strength in kilograms divided by height in meters squared) by age and gender.

Table 1. The fitted parameters of the ANCOVA analysis for all three body size covariates. **Parameter Estimates**⁸

Parameter	В	Std. Error	t	Sig.	95% Co Interva	onfidence l
					Lower	Upper
					Bound	Bound
Intercept	3.290	0.080	41.028	< 0.001	3.132	3.447
Log (M)	0.577	0.024	24.341	< 0.001	0.531	0.624
Log(HT)	0.968	0.049	19.672	< 0.001	0.871	1.064
Log(VPC)	-0.619	0.034	-18.474	< 0.001	-0.685	-0.553
Female	-0.372	0.020	-18.994	< 0.001	-0.411	-0.334

Table 2. The fitted parameters of the ANCOVA analysis adopting the log-transformed body

mass and height body size covariates.

Dependent Variab Parameter	ble: Log(HGS) B	Std. Error	t	Sig.	95% Confidence Interval		
					Lower Bound	Upper Bound	
Intercept	1.972	0.037	52.828	< 0.001	1.899	2.045	
Log(M)	0.164	0.008	20.565	< 0.001	0.148	0.179	
Log (<i>HT</i>) Female	1.438 -0.355	0.043 0.020	33.521 -17.800	<0.001 <0.001	1.354 -0.394	1.522 -0.316	

1

Table 3. The fitted parameters of the ANCOVA analysis adopting the log-transformed height body size covariate alone.

Parameter Estimates⁸

Dependent Variable: log(HGS)

Parameter	В	Std. Error	t	Sig.	95% Confidence Interval		
					Lower Bound	Upper Bound	
Intercept	2.516	0.027	93.261	< 0.001	2.463	2.569	
Log (<i>HT</i>) Female	1.752 -0.363	0.041 0.020	42.678 -17.781	<0.001 <0.001	1.672 -0.403	1.833 -0.323	

gender for a national sample of Americans aged 20 years and older.														
Age	Cl	C3	C5	CIO	C20	C30	C50	C60	C70	C80	C90	C95	C97	C99
Males														
20	8.4	9.5	10.0	10.9	12.0	12.7	14.1	14.7	15.5	16.4	18.3	19.0	19.8	21.6
25	8.9	10.2	10.8	11.7	12.9	13.7	15.0	15.7	16.4	17.3	18.5	19.6	20.4	21.9
30	9.2	10.6	11.2	12.2	13.4	14.2	15.5	16.1	16.8	17.6	18.6	19.7	20.4	21.8
35	9.4	10.8	11.5	12.5	13.6	14.4	15.6	16.2	16.9	17.6	18.6	19.7	20.4	21.7
40	9.5	10.8	11.5	12.4	13.5	14.2	15.4	16.0	16.6	17.3	18.4	19.4	20.0	21.5
45	9.3	10.6	11.2	12.1	13.2	13.9	15.0	15.5	16.1	16.8	17.9	18.8	19.5	20.9
50	8.9	10.2	10.8	11.7	12.7	13.4	14.5	15.0	15.5	16.2	17.4	18.1	18.7	20.0
55	8.7	10.0	10.6	11.5	12.5	13.2	14.3	14.8	15.4	16.0	16.9	17.8	18.4	19.6
60	8.0	9.4	10.1	11.0	12.0	12.7	13.8	14.3	14.8	15.5	16.5	17.3	17.8	19.0
65	6.7	8.5	9.3	10.4	11.5	12.3	13.4	13.9	14.4	15.1	16.0	17.0	17.7	19.1
70	5.7	7.7	8.6	9.8	11.0	11.7	12.9	13.4	14.0	14.7	15.3	16.8	17.6	19.4
75	4.8	6.9	7.8	9.0	10.2	11.0	12.1	12.6	13.1	13.8	14.3	16.1	16.9	19.1
80	3.8	5.8	6.8	8.0	9.1	9.8	10.9	11.3	11.9	12.6	13.3	14.8	15.7	18.1
Females														
20	7.4	8.0	8.4	8.9	9.5	10.0	10.8	11.2	11.7	12.2	13.0	13.7	14.2	15.1
20	7.4	8.0	8.4	8.9	9.5	10.0	10.8	11.2	11.7	12.2	13.0	13.7	14.2	15.1
25	7.7	8.3	8.6	9.2	9.8	10.3	11.2	11.6	12.0	12.6	13.4	14.1	14.5	15.4
30	7.8	8.5	8.8	9.4	10.1	10.6	11.4	11.9	12.3	12.9	13.7	14.4	14.8	15.8
35	7.7	8.5	8.9	9.5	10.2	10.7	11.5	12.0	12.4	13.0	13.8	14.5	14.9	15.9
40	7.4	8.3	8.7	9.4	10.1	10.6	11.5	11.9	12.4	12.9	13.7	14.4	14.9	15.9
45	7.0	8.0	8.5	9.2	10.0	10.5	11.4	11.8	12.2	12.8	13.6	14.3	14.8	15.9
50	6.5	7.7	8.2	8.9	9.7	10.3	11.1	11.5	12.0	12.5	13.3	14.1	14.6	15.8
55	6.2	7.4	7.9	8.7	9.5	10.0	10.9	11.3	11.7	12.2	13.0	13.7	14.3	15.4
60	6.0	7.2	7.7	8.4	9.2	9.7	10.6	11.0	11.4	11.9	12.6	13.3	13.8	14.9
65	5.8	6.9	7.4	8.1	8.8	9.4	10.2	10.6	11.0	11.5	12.2	12.9	13.4	14.5
70	5.4	6.4	6.9	7.6	8.3	8.8	9.6	10.0	10.4	10.9	11.6	12.3	12.8	13.9
75	5.0	5.9	6.3	6.9	7.6	8.1	8.9	9.2	9.6	10.1	10.9	11.6	12.2	13.3
80	4.5	5.3	5.7	6.2	6.9	7.3	8.0	8.4	8.8	9.3	10.1	10.9	11.5	12.8

Table 4. Normalized handgrip strength (handgrip strength in kilograms divided by height in meters squared) centiles by age group and

o Female

Male

