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Abstract 

 

Purpose: To manage physical performance in soccer, 

practitioners monitor the training load (TL) and the resulting 

fatigue. A method frequently used to assess performance is the 

countermovement jump (CMJ). However, the efficacy of CMJ 

to detect fatigue from soccer matches and training remains 

uncertain, as does the relationship between TL and change in 

CMJ performance. The aims of the present study are two-fold. 

One is to observe the changes of CMJ force-time components 

and jump height (JH). The second is to examine dose-response 

relationships between TL measures and CMJ over a 6-wk pre-

season. Methods: Twelve professional male youth soccer 

players (17±1 year, 71.2±5.6 kg, 178±5.8 cm) were recruited. 

Daily changes in CMJ were assessed against baseline scores 

established before pre-season training, along with internal and 

external TL measures. A series of Bayesian random intercept 

models were fitted to determine probability of change 

above/below 0 and greater than the coefficient of variation (CV) 

established at baseline. Jumps were categorised into match-day 

minus (MD-) categories where the higher number indicated more 

time from a competitive match. Results: JH was lowest on MD-

3 (28cm) and highest on MD-4 (34.6cm), with the probability of 

change from baseline CV highly uncertain (41% and 61% 

respectively). Changes to force-time components were more 

likely on MD-3 (21%-99%), which provided less uncertainty 

than JH. Bayes R2, ranged from 0.22-0.57 between TL measures 

and all CMJ parameters. Conclusion: Force-time components 

were more likely to change than JH. Practitioners should also be 

cautious when manipulating TL measures to influence CMJ 

performance.  
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INTRODUCTION 

Physical performance at any given time has been purported to 

be a consequence of an individual’s fitness status minus any 

accumulated fatigue1. The mechanisms of fatigue remain 

debated, but the practical measurement, categorization and 

management of fatigue has received some attention. Enoka and 

Duchateau2 provided a taxonomy and categorised fatigue into 

‘performance fatigue’ and ‘perceived fatigue’. The 

performance fatigability strand from the taxonomy includes 

contractile function (e.g., force capacity) and muscle activation 

(e.g., neuromuscular propagation). In practice, this is often 

referred to as neuormuscular fatigue and can be typically 

assessed through decrements in performance tests3. 

Performance tests such as the countermovement jump (CMJ) 

have been proposed to detect neuromuscular fatigue, but there 

has been recent criticism on whether jump-height (JH) is a valid 

marker of neuromuscular fatigue4. 

 

JH can be calculated via two methods, the ‘gold standard’ for 

calculating JH is to utilise ground reaction force (GRF) which 

samples at an appropriate frequency (usually 1000Hz) and 

numerically integrates the GRF to establish velocity, and 

consequently displacement5,6. The additional benefit of using 

the GRF data to assess CMJ is the consequent force-time 

components and the JH obtained7,8. Typically, the CMJ is 
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broken down into unweighting, braking, propulsive, flight and 

landing with each phase having their respective force-time data 

calculated (e.g., time in each phase, impulse, power and 

velocity)7.  However, a cheaper alternative is for practitioners 

to acquire JH data using the flight-time method. This is where 

JH is estimated from the distance travelled by the centre of mass 

(COM) and can be collected on equipment such as contact 

mats9.  

 

Due to its ease of administration and potentially low cost, 

numerous studies have characterised JH changes as a marker of 

neuromuscular fatigue following match-play3. Impairments in 

JH were suggested to occur immediately after the match and up 

to 72h 3. Given that match-play is often the largest training load 

(TL) experienced within a training microcycle, it is perhaps not 

surprising to see JH diminish3. This is due to match play 

inducing transient inflammation, energy depletion and damage 

to muscle tissue10,11,12. However, when assessing JH following 

training (where TL is typically less than that of a match), it is 

unclear whether JH reduces when assessed before and after 

training sessions across a competitive microcycle13. Thorpe et 

al.,14 have also shown that across a 17-day competitive 

microcycle, JH had low variation (4%), but negative changes in 

heart-rate variability and perceptions of fatigue were still 
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observed. These fundings suggest that JH alone may not detect 

neuromuscular fatigue which are observed by other measures. 

 

Consequently, investigating the force-time components which 

underpin the performance output (JH) might provide a different 

insight into an athlete’s state of fatigue and/or recovery. 

Gathercole et al.,8 have provided reliability and sensitivity of 

the CMJ test in college-level athletes. Following a high-

intensity fatigue protocol, there is evidence of a reduction in the 

athletes’ force-time data in up to 19 CMJ variables. Of these 19 

CMJ variables, there were larger changes (e.g., increased effect 

size) apparent with the force-time components as opposed to JH 

following the fatigue protocol. Changes in the force-time 

components as opposed to the JH could have contributed to 

impaired excitation–contraction coupling, stretch-reflex 

sensitivity related reduction in muscle stiffness or metabolic 

disturbances15,16. For example, decreased reflux sensitivity is 

thought to contribute to eccentric muscle function, which may 

explain the changes during the braking phase in the Gathercole 

et al., study8. Pasquet et al.,17 also suggest that altered 

intracellular Ca2+ controlled excitation–contraction coupling 

processes during concentric contractions are present under 

neuromuscular fatigue. As such, eccentric and concentric force-

time components may be affected differently when 

neuromuscular fatigue is present and consequently alter the 
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force-time components and/or JH. Although not related to a 

soccer-specific population, these findings highlight the 

potential added information on neuromuscular fatigue from the 

force-time components during the CMJ8.  

 

Regular monitoring of CMJ is now commonplace in elite 

performance environments. Moreover, the new software which 

utilises the force-time data can now give instant feedback and 

consequently information on the force-time components and the 

JH obtained. However, there is currently limited evidence 

measuring the force-time components in soccer players with 

research focussing only on match-play or simulation3. 

Furthermore, if the purpose of monitoring players’ CMJ is to 

help inform programming decisions and manage the training 

process (e.g., if a player is demonstrating a decreased JH for 

their usual TL, then the training plan should be adjusted). This 

practice would suggest that a reduction in TL would impact JH. 

However, few studies have attempted to examine this dose-

response relationship and have not considered a comprehensive 

range of internal and external TL in relation to the CMJ3,18,19. If 

this relationship is present, then practitioners can be more 

confident that a change in TL would impact CMJ and 

consequently manage neuromuscular fatigue better.   
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Previous research has attempted to encapsulate this dose-

response relationship, but has only used partial TL 

measurements (e.g., high-speed running)14,19, acquired minimal 

observations (e.g., pre and post pre-season)18, reported very 

weak relationships with JH20, and only considered the JH rather 

than the force-time components14,18,19. Therefore, examining 

the force-time components alongside the JH with a combination 

of increased observations and extensive range of TL 

measurements (which consider the whole intensity continuum) 

may provide more information on the dose-response 

relationships between the TL and CMJ.  

 

Consequently, the aims of the study are two-fold. One is to 

observe the longitudinal (6-weeks pre-season) changes with the 

force-time components and JH. The second is to examine dose-

response relationships between TL measures and CMJ variables 

over the pre-season period.   
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METHOD  

Participants 

Twelve male academy soccer players were recruited to 

participate in the study. All players were part of a Category 2 

academy under the Premier League guidelines. The physical 

characteristics (mean±SD) of the players were as follows: age 

17±1yr, 71.2±5.6kg, 178±5.8cm. Written informed consent was 

given by each player, with the study being approved by the 

university ethics committee.  

 

Procedure 

To establish baseline measurements, each player completed 3 

CMJ followed by a 24-h rest and then performed another 3 CMJ 

4-days prior to pre-season.  All players were familiarised with 

the CMJ protocol and were instructed to perform a CMJ without 

arm-swing given its greater reliability compared to with arm-

swing21.  

 

The coefficient of variation (CV%) was calculated for each 

player at baseline and used in the statistical analysis as a practical 

threshold to change above this value rather than as a covariate in 

the statistical models. The CV% was calculated by dividing the 

SD by the mean multiplied by 100 to give a percentage.  The 

mean CV% for each player was then calculated from both tests 

and the final CV% used for analysis was the mean squad CV% 
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for each variable (table 1). The best CMJ (highest JH) from three 

trials was taken for analysis as this had been previously deemed 

an acceptable monitoring method for CMJ performance22.  

 

CMJ was monitored using dual PASCO force plates (PASCO 

scientific, Roseville, CA, US) which sampled at 1000Hz. Players 

were asked to jump on the morning prior to each training session 

(and 3 home match fixtures) from 45-60 min prior to outdoor 

training/ match-play following a standardised warm-up utilising 

dynamic stretches over the 6-wk period. CMJ data collection and 

analysis followed guidelines previously set out by Owen et al.,23 

CMJ variables collected adhere to previous definitions provided 

by Gathercole et al.,8 and McMahon et al.,7. JH was calculated 

using the impulse-momentum method24, while net-force was 

integrated with respect to time to obtain net impulse which was 

summed over the eccentric and concentric phases23. There were 

a total of 244 jumps collected (22±5 observations per player) 

over the 6-weeks of pre-season. Should a participant have missed 

a CMJ during data collection, it was simply not included in the 

analysis and no imputation methods were used.  

 

Training sessions (n=26) and matches (n=7) were categorised in 

relation to the days before the match (i.e., match-day minus 

[MD-]). Thus, there were 6 categories broken down into MD-5 

(5-days prior to match), MD-4 (4-days prior to match), MD-3 (3-
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days prior to match), MD-2 (2-days prior to match), MD-1 (1-

day prior to match) and MD (match-day). When matches were 

on a Saturday, players would typically jump every morning 

including Saturday’s (home fixture only) but not Sunday 

(MD+1). There was one occasion where players played 2 games 

in one week with the TL and CMJ categorised (MD) 

appropriately and MD+1 always remaining a non-training day. 

 

**Table 1 near here – Coefficient of Variation (CV) of all jump 

measures at baseline ** 

 

To monitor the player’s internal TL, heart rate was collected via 

heart rate monitors which sampled at 10Hz (TeamPro, Polar 

Electro, OY, Finland) with the raw data being exported for 

analysis. All raw HR data was inspected visually for abnormal 

spikes, but these were not apparent in the current data collection. 

A comprehensive range of training impulse (TRIMP) methods 

were included and calculated in the following manor. The 

Bannister TRIMP (bTRIMP) was calculated based on training 

duration, HR and a weighting factor using the following formula: 

 

bTRIMP= duration training (minutes) x ΔHR x 0.64℮1.92x 

 

where ΔHR = (HRex – HRrest)/(HRmax – HRrest), ℮ equals the 

base of the Napierian logarithms, 1.92 equals a generic constant 

for males and x equals ΔHR. Edwards TRIMP (eTRIMP) was 
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calculated based on time spent in five HR zones and multiplied 

by a zone-specific weighting factor: duration in zone 1 (50–59% 

of HRmax) multiplied by 1, duration in zone 2 (60–69% 

HRmax) multiplied by 2, duration in zone 3 (70–79% HRmax) 

multiplied by 3, duration in zone 4 (80–89% HRmax) multiplied 

by 4 and duration in zone 5 (90–100% HRmax) multiplied by 5. 

Summating the scores from each zone results in the final 

eTRIMP25. A modified luTRIMP was employed by multiplying 

the time spent in three HR zones based around HR at fixed blood 

lactate accumulation at 2 and 4 mmol · L−1 26,27. The RPE training 

load (sRPE-TL) was calculated by multiplying the duration of 

the session by the CR-10 score28. Participants were familiar with 

CR-10 method as they had previously used it for 4 seasons prior 

to data collection. sRPE-TL was recorded on pen and paper by 

verbally asking each player for their score immediately 

following sessions. 

 

iTRIMP was calculated in the same manor is bTRIMP, but 

instead of the generic exponential weighting factor, each player 

would generate their own weighting factor as stated by Manzi et 

al.,29. To generate individual weighting factors, each player 

completed an incremental lactate threshold test on a motorised 

treadmill (h/p cosmos mercury 4.0; h/p Cosmos, Nussdrof-

Traunstein, Germany). The protocol consisted of five stages at 

8, 10, 12, 14 and 16 km · h−1 30. Each stage was 4 min in duration 
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with a 1-min rest period between stages. Following the 1-min 

rest at 16 km · h−1, the protocol increased 0.5 km · h−1 every 

30 s until the player reached volitional exhaustion. During all 

rest periods and following the final stage, a 20 μl fingertip 

capillary blood sample was taken. The blood sample was diluted 

in a lactate-glucose haemolysing solution and then taken for 

analysis (Biosen C-Line, EKF Diagnostics, Germany). To 

establish a fixed blood lactate accumulation at (S4) mmol·l−1 the 

Lactate-E software was used31. 

 

External TL was measured with a GPS/MEMS device worn 

between the players scapula (GPS 10 Hz, Tri-axial 

accelerometer 100Hz; Catapult S5, firmware 6.75, Catapult 

Innovations, Melbourne, Australia). These devices have 

previously demonstrated reliability (1.9-6% CV) for 

instantaneous velocity, high-speed running (4.7% CV)32 and 

sufficient sensitivity to accelerations, decelerations, and constant 

velocity33. Data were processed using Sprint 5.1 (Catapult 

Innovations, Melbourne, Australia). The thresholds used for 

high-speed running (HSR) distances were 14.4-19.8 km·h-1, very 

high-speed running (VHSR) was 19.8-25.2 km·h-1 and maximal 

sprint distance was >25.2 km·h-1. High-intensity accelerations 

(HiAccel) and decelerations (HiDecel) thresholds were set at 

distance covered at or above 3 m·s-2. Total distance (TD) and 

PlayerLoadTM (PL) were also collected for each session. 
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Additionally, each player had their own individual high-speed 

threshold (iHSD) which was derived from the speed of which a 

fixed blood lactate concentration of 4 mmol·L-1 occurred (13±2 

km·h-1) on the incremental treadmill test27. A mean number of 

12±13 satellites recorded sessions where the horizontal dilution 

of precision recorded at 0.8 ± 0.4 and minimum effort dwell time 

was set to 1 s (default settings). 

 

Statistical Analysis 

Given recent concerns over null-hypothesis significance testing, 

the wide misinterpretation of traditional p-values and confidence 

intervals, as well as the need for random samples for their 

accurate calculation, in the present study, Bayesian analysis was 

used rather than traditional frequentist analysis. This type of 

analysis avoids these issues, is better suited for making 

inferences on small sample sizes given informative prior 

information and provides direct probabilities of differences or 

relationships. An added advantage of using Bayesian probability 

is that direct probabilities are not limited to calculating a 

probability above or below zero, but a probability above any 

value that a researcher might consider important. In the present 

study, we calculated differences above natural variation in jump 

performance using the coefficient of variation as a proxy for this. 

The output of Bayesian analysis is known as a posterior 

distribution, which is essentially a probability distribution that is 
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a combination of prior knowledge and the likelihood function 

using the data. This distribution captures all the information 

about parameter values and their uncertainty.   

 

Rather than conducting a series of hypothesis tests, the data were 

modelled in different ways and the best models chosen in terms 

of how well the model performed on unseen data, known as out-

of-sample prediction accuracy. Leave-One-Out cross validation 

information criterion (LOOIC) was used for this purpose, where 

the pointwise out-of-sample prediction accuracy was determined 

using log-likelihoods from posterior simulations of parameters. 

The best models are reported, and all passed an agreed threshold 

for a metric that determines reliability of estimates obtained from 

Markov-Chain Monte-Carlo (MCMC) chains (rˆ=1). Both force-

time components and JH were assessed against baseline and this 

was modelled over time using the match-day minus categories. 

A series of Bayesian models were fitted where the intercept for 

each participant was allowed to vary, allowing a partial pooling 

strategy with all of the intercepts informing each other34. These 

models not only capture the central tendency of the trends across 

time but also trends for each player. Given time between jumps 

differed (24 hrs and 48-72hrs) with players sometimes not 

playing on Wednesday or Sundays, time between each jump was 

included as a covariate to control for this. Estimated marginal 
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means (Lenth et al., 2020, emmeans, v1.4.8) were calculated 

from the best fitting models with pairwise comparisons made 

between time categories reported along with their associated 

95% Highest Posterior Density (HPD) — the Bayesian 

equivalent of a confidence interval. Probability was calculated 

for both change above or below 0 depending on the most 

probable direction (probability of direction), and a change 

greater than the CV% established at baseline (practical 

significance in that it gives probability above natural variation) 

using bayestest package in R. The models used appropriate 

weakly informed priors as a starting point as these can help 

regulate the posterior distribution by reducing the effect of any 

extreme values in the data35. In order to check that the chosen 

priors had a reasonable constraining effect without biasing 

estimates, prior predictive checks were used and found to be 

appropriately weakly informative across estimates before the 

collected data were included in the models.  In order to check 

that the final models simulated the actual data in terms of 

distribution, variance and central tendency, posterior predictive 

checks were used and showed (using draws from a model’s 

posterior distribution), that the simulated data aligned well with 

the observed data. 
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To establish relationships between the previous days’ TL and 

next-day jump, all CMJ data (height and force-time components) 

were subtracted from baseline to give a change from baseline 

score. The previous day’s load was then modelled with the 

change in force-time variables or jump height. Again, a series of 

Bayesian random intercepts models were fitted, with 

participant’s intercepts allowed to vary. Different response 

distributions were used to model the dependent variable ranging 

from Gaussian (normal) to Skew normal. Time between jumps 

was again used as a covariate within the model. A Bayesian 

version of R2 was calculated as an estimate of the proportion of 

variance explained for future predictions along with 95% HPDs. 

All analyses were conducted in R (Core Team, 2020) and 

analysed using the Bayesian Regression Models in Stan (brms; 

Buerkner, 2017) package which uses Stan (Stan development 

team, 2018) to implement a Hamiltonian Markov Chain Monte 

Carlo with a No-U-Turn Sampler with the default settings 

(number of chains, iterations, thinning and burn-in) used. Code 

is available as a supplementary file. 
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RESULTS 

Tables 2 and 3 show the weekly mean TL data experienced over 

the 6-weeks according to each match-day category. Table 4 

indicates that JH was reduced on MD and MD-3 with all other 

days showing small increases or minimal change from baseline. 

Countermovement depth (CMD) was reduced on MD-3 with all 

other days showing small changes from baseline (0.2 to 1.5cm) 

as shown in Table 5. Braking phase time was increased on all 

training and match days but the probability of this occurring 

above the CV% is uncertain ranging from 0 to 71% (table 5). 

Table 5 also shows that mean power was reduced in the braking 

phase across all categories with differences from baseline 

ranging from small (62W) to large (290W). Net impulse was 

reduced during the braking phase with the largest change on MD-

3 and measures in the propulsive phase remain relatively 

unchanged from baseline (table 5). Overall, the braking phase 

force-time components suggest a higher probability of a practical 

change (more than CV%) compared to JH. 

 

Explained variance for future predictions between all TL 

(internal and external) measures and JH ranged from 0.22-0.25 

(95%CI: 0.13-0.39). For CMD the R2 values ranged from 0.43-

0.47 (95%CI: 0.35-0.53) across all TL. The R2 values for all TL 

and the braking phase time, mean power and net impulse were 

0.55-0.57 (95%CI: 0.47-0.62), 0.38-0.40 (95%CI: 0.30-0.47) and 
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0.39-0.43 (95%CI: 0.31-0.49) respectively. The R2 values for all 

TL and the propulsive phase time, mean power and net impulse 

were 0.38-0.45 (95%CI: 0.30-0.52), 0.37-0.39 (95%CI: 0.28-

0.46) and 0.40-0.42 (95%CI: 0.32-0.49) respectively. Figure 1 

shows one of the highest R2 relationship to give visual indication 

of the uncertain relationships between TL and CMJ. 

Relationships for each TL measure are available as a 

supplementary file within Tables 6 and 7.  

 

**Table 2 near here – Internal load measures for each of the 

categories across the 6-week pre-season (mean ± SD)** 

 

**Table 3 near here - External load measures for each of the 

categories across the 6-week pre-season (mean ± SD)** 

 

 

**Table 4 near here – Change in jump height (cm) from 

baseline for each category across the 6-week pre-season. ** 

 

 

 

**Table 5 near here - Change in force-time components from 

baseline for each category across the 6-week pre-season ** 

 

**Figure 1 near here 
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DISCUSSION 

 

The present study aims were two-fold: 1) to determine 

if the force-time components and JH change over the 

pre-season period and 2) to establish potential dose-

response relationships between TL measures and the 

force-time components or JH. JH was at its lowest on 

MD-3 (28cm) and its highest on MD-4 (34.6cm), but 

the chance of any change from baseline CV is highly 

uncertain (41% and 61% respectively). There was more 

consistent evidence for force-time components 

changing from baseline on MD-3 (see table 5). Braking 

phase time (+49ms), mean power (-290W) and net 

impulse (-30N·s-1) were more likely to change on MD-

3, with the CMD (+6.2cm) also not lowering as normal. 

Propulsive phase force-time components changes were 

less pronounced, suggesting that the players maintained 

the ability to concentrically produce force across each 

MD- category. Therefore, the main finding from this 

particular study is that braking phase force-time 

components show a higher probability to change 

compared to JH during a soccer pre-season. However, 

in terms of measuring a dose-response relationship 

between TL measures and the CMJ (JH and force-time 

components), it is unlikely the previous days TL 
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influences the next day CMJ (with explained variance 

ranging from 23% to 57% across all TL measures). 

Thus, practitioners looking to manage neuromuscular 

fatigue via the CMJ method should look to investigate 

changes during the braking phase but remain cautious 

in adjusting their training plan based on the previous 

day's TL measures (internal or external).  

 

Similar to previous research13,14, JH was preserved over 

the pre-season period and did not seem to be affected 

by soccer training (given the uncertainty of the dose-

response data and low probability of change >CV). 

Given the inconclusive evidence regarding JH as a 

marker of neuromuscular fatigue soccer training, our 

findings highlight the potential of the force-time 

components to change more than the JH, and they may 

want to be considered within the training monitoring 

process. This study suggests that on MD-3 during pre-

season, the force-time data was more like to reduce in 

the braking phase across all components (71-99% 

chance of changing) than both the JH (41% chance of 

reducing) and all propulsive phase components (3-58% 

chance of changing). This is similar to the acute studies 

within the soccer literature14, been observed elsewhere8 
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and could potentially be due to decreased reflux 

sensitivity15,16. 

 

However, an interesting observation from the present 

study is that MD-4 represents the highest internal 

(iTRIMP=280±135 AU) and external load 

(TD=9739±2137m) experienced over the pre-season 

(such TL is higher than the MD due to players routinely 

rotating their match playing time which can be common 

during the pre-season period). Following the training on 

MD-4, the recorded CMJ variables on MD-3 represent 

the largest reductions in both JH (2.8cm) and braking 

phase force-time components. However, given the 

uncertainty in the dose-response relationships between 

all TL measures and all CMJ parameters, these changes 

may not be influenced by the previous day TL.   

 

Previous dose-response research which has examined 

TL and JH over a pre-season period show uncertain 

relationships18,19. But unlike the present study, they did 

not measure CMJ daily or consider the force-time 

components. Studies that have utilised the force-time 

component have followed match-play and only 

considered a few isolated metrics and not the temporal 

force-time components36,37. Although the current study 
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tried to address these limitations, no credible dose-

response relationships were found between the previous 

days TL and next-day CMJ. Figure 1 shows one of the 

strongest (some were very similar, see table 6 & 7 

supplementary file) dose-response relationships, which 

was between HSR and change in braking phase time. 

This figure, along with the other dose-response data, 

show the importance of developing these dose-response 

relationships. For example, it highlights that when 

some players complete more HSR, some spend longer 

in the braking phase and others spend less (and vice 

versa). Therefore, this makes it difficult for the 

practitioner to adjust the training plan (based on the 

previous day TL) with less uncertainty.  

 

Previous research has also considered accumulated 

HSR (>14.8 km·s-1) over 2, 3 and 4 days, with the 

results suggesting unclear relationships (r=0.18-0.28)14. 

Thus, along with this study, there appears to be a 

growing body of evidence to suggest that soccer 

training may not induce neuromuscular fatigue which is 

captured via the CMJ method, or the soccer training 

itself is effective at preserving CMJ performance. This 

is perhaps due to CMJ being a performance measure 

that can theoretically be affected by different training 
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methods (cardiovascular, strength or skill) and non-

physical factors (psychological) as posited by the 

multicomponent model presented by Calvert et al.,38. 

Consequently, one potential explanation for JH and the 

force-time data to change, but not display a dose-

response relationship between TL measures is the use 

of different training modalities within soccer. Thus, 

future studies should consider how each training 

modality (e.g., on-field or gym-based) may affect the 

force-time components. Such data may provide clarity 

on why the force-time components and JH may change, 

when the relationship between CMJ and the previous 

day TL is uncertain. 

  

The present study is not without its limitations. The 

current sample size is somewhat low, but this was the 

maximum number of players that could be used for 

analysis at the present time and had the most 

observations. Despite the small sample size, the HPD 

intervals capture the uncertainty and are reflected 

within the results. Moreover, there were only 2 

occasions (out of 7) where CMJ data could be collected 

on MD. The ability to assess CMJ the next day 

following training or matches was not always possible 

due to players having a rest day, which increased time 
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between jumps. However, this was accounted for 

within the data analysis by adding time between jumps 

as a covariate.  

 

Practical application 

The current study provides evidence that the CMJ 

force-time data (particularly during the braking phase) 

has a higher probability of practical change (more than 

the CV) over a longitudinal period than measuring JH. 

This indicates that monitoring CMJ force-time 

components rather than JH may be more beneficial for 

practitioners. Practitioners should also be mindful of 

the CV% for each measure and consider some form of 

error threshold when looking at changes, rather than 

simply looking at changes above zero.   Researchers 

should also aim to explore similar applied concepts 

using dose-response relationships to help identify 

actionable information for practitioners.  

 

Conclusions 

To summarise, whilst there were indications on MD-3 

that the CMJ force-time data and JH altered, there was 

no credible dose-response relationship with the 

previous days TL. This is in line with previous soccer 

literature, which has also examined CMJ in relation to 
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TL across different time periods. As such, it remains 

uncertain as to whether the CMJ is influenced by the 

TL. Other modalities such as resistance exercise may 

play a further role in modifying acute CMJ variables as 

discussed previously, and future research may wish to 

examine to what extent resistance exercise impairs 

CMJ performance compared to field-based training and 

matches. 
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Table 1 – Coefficient of Variation (CV) of all jump measures at baseline 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 – Internal load measures for each of the categories across the 6-week pre-season (mean ± SD) 

 
 sRPE (AU) iTRIMP (AU) bTRIMP (AU) luTRIMP (AU) eTRIMP (AU) 

MD 915 ± 479 220 ± 128 158 ± 131 193 ± 65 302 ± 103 

MD -1 587 ± 245 129 ± 81 89 ± 39 174 ± 49 219 ± 82 

MD -2 714 ± 324 192 ± 122 141 ± 67 217 ± 97 324 ± 143 

MD -3 929 ± 424 207 ± 122 139 ± 68 213 ± 68 320 ± 138 

MD -4 1105 ± 272 280 ± 135 182 ± 56 279 ± 68 418 ± 97 

MD -5 605 ± 181 147 ± 68 122 ± 45 182 ± 48 280 ± 84 

Notes: AU= arbitrary units, MD= match-day, iTRIMP=individualised TRIMP, bTRIMP= Banister TRIMP, luTRIMP= Lucia 

TRIMP, eTRIMP= Edwards TRIMP 

 

 

 

 JH (cm) CMD (cm) BPT (ms) BMP (W) BNI (N·s-1) PPT (ms) PMP (W) PNI (N·s-1) 

CV 3.3 5.3 42 157 18 36 120 12 

CV% 5.4 20.3 23.9 20.4 16.1 13.9 7.6 4.8 

Notes: JH= jump height, CMD= countermovement depth, BPT= braking phase time, BMP = braking mean power, BNI= braking net impulse, PPT= 

propulsive phase time, PMP = propulsive mean power, PNI= propulsive net impulse 
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Table 3 - External load measures for each of the categories across the 6-week pre-season (mean ± SD) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 – Change in jump height (cm) from baseline for each category across the 6-week pre-season. 

 

 

 

 TD (m) PL (AU) HiDec (m) HiAcc (m) iHSD (m) HSR (m) VHSR (m) Sprint Dist (m) 

MD 8396 ± 2593 772 ± 227 195 ± 71 276 ± 92 6147 ± 2114 1134 ± 435 370 ± 195 125 ± 157 

MD -1 5514 ± 515 564 ± 118 128 ± 53 212 ± 69 4383 ± 891 550 ± 409 226 ± 282 62 ± 127 

MD -2 7756 ± 3846 674 ± 359 191 ± 105 288 ± 155 6336 ± 3238 776 ± 438 348 ± 313 81 ± 106 

MD -3 7104 ± 2852 768 ± 288 154 ± 67 263 ± 109 5330 ± 962 880 ± 609 486 ± 414 23 ± 50 

MD -4 9739 ± 2137 961 ± 201 227 ± 93 364 ± 127 6744 ± 2323 1416 ± 433 982 ± 482 117 ± 148 

MD -5 7312 ± 1149 709 ± 134 172 ± 50 265 ± 60 5793 ± 1037 1011 ± 381 277 ± 251 48 ± 42 

Notes: AU= arbitrary units, MD= match-day,  TD=total distance, PL=PlayerLoadTM, HiDec=high-intensity decelerations, HiAcc=high-intensity accelerations, 

iHSD=individualised high-speed distance, VHSR=very high-speed running, Sprint Dist= sprint distance. 

 Baseline MD MD-1 MD-2 MD-3 MD-4 MD-5 

EMM [HPD] 30.9 [27.7 to 34.3] 29 [25.4 to 32.3] 31.3 [28.2 to 34.5] 32.3 [29.1-35.5] 28 [24.1-32.4] 34.6 [31.4-38] 30.3 [26.7-34.6] 

ΔEMM [HPD]  -1.9 [-4.8 to 0.6] 0.4 [-1.9 to 2.7] 1.3 [-1.1 to 3.8] -2.8 [-6.5 to 0.6] 3.7 [-1.3 to 6.4] 0.1 [-3.8 to 2.6] 

P  0.92 0.62 0.86 0.94 0.99 0.65 

P>CV  0.17 0.01 0.06 0.41 0.60 0.05 

Notes: EMM= Estimated marginal means, MD= Match-day, CV= coefficient of variation, P=probability, P>CV= probability is greater than the CV, HPD=highest posterior density (set at 95%). 
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Table 5 - Change in force-time components from baseline for each category across the 6-week pre-season 

 CMD (cm) Braking PT (ms) Braking MP (W) Braking NI (N·s-1) Propulsive PT (ms) Propulsive MP (W) Propulsive NI (N·s-1) 

B-EMM [HPD] -29.9 [-33.8 to -26] 170 [138 to 203] 876 [763 to 982] 123 [103 to 137] 252 [216 to 287] 1664 [1545 to 1813] 258 [245 to 272] 

MD-EMM [HPD] -30.2 [-34.1 to -26.2] 193 [159 to 224] 810 [709 to 922] 120 [104 to 133] 258 [220 to 292] 1596 [1461 to 1725] 251 [237 to 264] 

ΔEMM [HPD] -0.2 [-2.6 to 3.1] 24 [4 to 42] -64 [-152 to 12] -3 [-13 to 7] 1 [-15 to 26] -69 [-157 to 15] -6 [-15 to 3] 

P>0 

P>CV 

0.58 

0.00 

0.99 

0.03 

0.93 

0.02 

0.75 

0.00 

0.71 

0.00 

0.95 

0.13 

0.92 

0.12 

MD-1 EMM [HPD] -28.5 [-31.9 to -24.7] 188 [157 to 218] 763 [665 to 860] 114 [99 to 126] 261 [229 to 298] 1672 [1552 to 1793] 260 [247 to 272] 

ΔEMM [HPD] 1.5 [-1 to 3.8] 19 [2 to 34] -113 [-185 to -40] -10 [-19 to -1] 1 [-10 to 25] 7 [-72 to 78] 2 [-6 to 9] 

P>0 

P>CV 

0.88 

0.00 

0.99 

0.00 

0.99 

0.12 

0.99 

0.04 

0.84 

0.00 

0.57 

0.00 

0.67 

0.00 

MD-2 EMM [HPD] -28.6 [-32.3 to -25] 188 [153 to 217] 775 [673 to 879] 115 [100 to 127] 256 [223 to 293] 1645 [1524 to 1774] 256 [243 to 269] 

ΔEMM [HPD] 1.4 [-1.1 to 3.9] 18 [1 to 34] -102 [-175 to -25] -9 [-18 to 1] 1 [-13 to 23] -20 [-98 to 61] -1 [-10 to 7] 

P>0 

P>CV 

0.85 

0.00 

0.98 

0.00 

0.99 

0.07 

0.97 

0.03 

0.67 

0.00 

0.70 

0.00 

0.63 

0.01 

MD-3 EMM [HPD] -23.6 [-28.1 to -19.1] 219 [ 181 to 253] 586 [462 to 715] 93 [76 to 108] 264 [227 to 303] 1536 [1387 to 1679] 250 [235 to 266] 

ΔEMM [HPD] 6.2 [2.7 to 9.7] 49 [26 to 72] -290 [-400 to -188] -30 [-42 to -17] 12 [-12 to 38] -131 [-27 to -246] -8 [-19 to 4] 

P>0 

P>CV 

0.99 

0.69 

1.00 

0.71 

1.00 

0.99 

1.00 

0.97 

0.82 

0.03 

0.99 

0.58 

0.90 

0.21 

MD-4 EMM [HPD] 

ΔEMM [HPD] 

P>0 

P>CV 

-30.2 [-33.9 to -26.5] 

-0.2 [-2.4 to 2.8] 

0.57 

0.00 

188 [155 to 218] 

18 [1 to 35] 

0.97 

0.00 

814 [708 to 922] 

-62 [-143 to 22] 

0.93 

0.01 

119 [104 to 132] 

-5 [-15 to 5] 

0.82 

0.01 

241 [207 to 276] 

-11 [-29 to 9] 

0.88 

0.00 

1724 [1607 to 1863] 

58 [-27 to 141] 

0.91 

0.08 

258 [244 to 270] 

1 [-9 to 8] 

0.50 

0.00 

MD-5 EMM [HPD] -29.4 [-33.4 to 25.1] 198 [162 to 230] 789 [670 to 911] 118 [102 to 133] 253 [213 to 289] 1637 [1497 to 1772] 256 [240 to 269] 

ΔEMM [HPD] 0.4 [-2.6 to 3.8] 28 [1 to 50] -88 [-190 to 14] -5 [-17 to 7] 0 [-23 to 23] -29 [-126 to 75] -2 [-13 to 9] 

P>0 

P>CV 

0.61 

0.00 

0.99 

0.11 

0.95 

0.09 

0.79 

0.02 

0.52 

0.00 

0.71 

0.04 

0.67 

0.04 

Notes: B=baseline, MD=Match day, EMM=estimated marginal means, HPD=highest posterior density (set at 95%), ΔEMM=change in EMM from baseline, P=probability, P>CV= probability is greater than the CV,  HPD=highest posterior density 

(set at 95%),  CMD=countermovement depth, PT=phase time, MP=mean power, NI=net impulse. 
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Table 6 – The dose-response relationship between the internal training load and the different countermovement jump variables. Bayesian R2 with 

[95% credible intervals]. 

 

 

 

 

 

 

 

 Δ Jump 

Height (cm) 

Δ CMD  

(cm) 

Δ Braking PT 

(s) 

Δ Braking MP 

(W) 

Δ Braking 

NI  

(N·s-1) 

Δ Propulsive PT 

(s) 

Δ Propulsive 

MP (W) 

Δ Propulsive 

NI  

(N·s-1) 

sRPE 0.23 

[0.15-0.32] 

0.44 

[0.37-0.51] 

0.57 

[0.50-0.62] 

0.40 

[0.31-0.47] 

0.42 

[0.34-0.49] 

0.45 

[0.37-0.52] 

0.37 

[0.28-0.44] 

0.40 

[0.32-0.48] 

iTRIMP 0.22  

[0.13-0.39] 

0.43 

[0.35-0.50] 

0.55  

[0.47-0.61] 

0.38 

[0.30-0.45] 

0.40 

[0.32-0.47] 

0.38 

[0.30-0.46] 

0.37 

[0.29-0.44] 

0.40 

[0.32-0.48] 

bTRIMP 0.22 

[0.13-0.30] 

0.43 

[0.35-0.50] 

0.56 

[0.50-0.61] 

0.39 

[0.30-0.46] 

0.41 

[0.33-0.48] 

0.45 

[0.38-0.52] 

0.37 

[0.29-0.44] 

0.40 

[0.32-0.47] 

luTIRMP 0.22 

[0.13-0.31] 

0.43 

[0.36-0.50] 

0.56 

[0.50-0.61] 

0.38 

[0.30-0.46] 

0.41 

[0.33-0.48] 

0.45 

[0.38-0.52] 

0.37 

[0.28-0.45] 

0.40 

[0.32-0.48] 

eTRIMP 0.22 

[0.13-0.30] 

0.43 

[0.35-0.50] 

0.56 

[0.50-0.62] 

0.38 

[0.30-0.46] 

0.39 

[0.31-0.47] 

0.45 

[0.37-0.52] 

0.37 

[0.28-0.44] 

0.40 

[0.33-0.47] 

Notes:  iTRIMP=individualised TRIMP, bTRIMP= Banister TRIMP, luTRIMP= Lucia TRIMP, eTRIMP= Edwards TRIMP CMD=Countermovement depth, PT=phase time, MP=mean power, 

NI=net impulse 
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Table 7 – The dose-response relationship between the external training load and the different countermovement jump variables. Bayesian R2 

with [95% credible intervals]. 

 

 Δ Jump 

Height (cm) 

Δ CMD  

(cm) 

Δ Braking PT 

(s) 

Δ Braking MP 

(W) 

Δ Braking 

NI  

(N·s-1) 

Δ Propulsive PT 

(s) 

Δ Propulsive 

MP (W) 

Δ Propulsive 

NI  

(N·s-1) 

TD 0.23 

[0.14-0.32] 

0.46 

[0.35-0.53] 

0.56 

[0.50-0.62] 

0.40 

[0.31-0.46] 

0.42 

[0.34-0.49] 

0.45 

[0.37-0.52] 

0.37 

[0.29-0.44] 

0.40 

[0.32-0.47] 

PL 0.23 

[0.14-0.32] 

0.47 

[0.39-0.53] 

0.56 

[0.50-0.62] 

0.40 

[0.31-0.47] 

0.43 

[0.34-0.49] 

0.45 

[0.38-0.52] 

0.37 

[0.28-0.44] 

0.40 

[0.32-0.47] 

HiDec 0.24 

[0.15-0.33] 

0.46 

[0.39-0.53] 

0.56 

[0.50-0.62] 

0.39 

[0.31-0.47] 

0.42 

[0.34-0.49] 

0.45 

[0.37-0.52] 

0.37 

[0.28-0.44] 

0.40 

[0.32-0.48] 

HiAcc 0.24 

[0.15-0.32] 

0.47 

[0.40-0.53] 

0.56 

[0.50-0.62] 

0.40 

[0.31-0.47] 

0.42 

[0.34-0.49] 

0.45 

[0.37-0.52] 

0.37 

[0.29-0.44] 

0.40 

[0.32-0.48] 

iHSD 0.24 

[0.15-0.32 

0.47 

[0.40-0.53] 

0.56 

[0.50-0.62] 

0.39  

[0.30-0.46] 

0.41 

[0.33-0.48] 

0.45 

[0.37-0.52] 

0.37 

[0.29-0.44] 

0.40 

[0.32-0.47] 

HSR 0.25 

[0.16-0.33] 

0.47 

[0.40-0.53] 

0.57 

[0.51-0.62] 

0.39 

[0.31-0.47] 

0.42 

[0.34-0.49] 

0.45 

[0.37-0.52] 

0.39 

[0.30-0.46] 

0.41 

[0.33-0.48] 

VHSR 0.24 

[0.15-0.33] 

0.45 

[0.38-0.52] 

0.57 

[0.51-0.62] 

0.39 

[0.31-0.47] 

0.42 

[0.34-0.49] 

0.45 

[0.37-0.52] 

0.39 

[0.30-0.46] 

0.41 

[0.33-0.48] 

Sprint 

Dist 

0.24 

[0.16-0.33] 

0.45 

[0.37-0.52] 

0.57 

[0.50-0.62] 

0.39 

[0.30-0.46] 

0.41 

[0.33-0.49] 

0.45 

[0.37-0.52] 

0.38 

[0.30-0.46] 

0.42 

[0.33-0.49] 

Notes: CMD=Countermovement depth, PT=phase time, MP=mean power, NI=net impulse, TD=total distance, PL=PlayerLoadTM, HiDec=high-intensity decelerations, HiAcc=high-intensity 

accelerations, iHSD=individualised high-speed distance, VHSR=very high-speed running, Sprint Dist= sprint distance. 
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 Figure 1 – Relationship between the previous days high-speed running (m) and 

change in braking phase time (s) 
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Supplementary code for R 
 
# Point working directory to csv file 
# Read in CSV file 
data <-read.csv("named_file.csv")  
 
 
# load packages 
if (!require(brms)) { 
  install.packages("brms") 
} 
library(brms) # note that for the brms package to run,  
#rstan https://mc-stan.org/users/interfaces/rstan will need to be installed 
 
if (!require(emmeans)) { 
  install.packages("emmeans") 
} 
library(emmeans) 
 
if (!require(bayestestR)) { 
  install.packages("bayestestR") 
} 
library(bayestestR) 
 
# A separate id number is assigned to each player so these numerical values need to be  
#set as a factor rather than an integer 
data$id <- as.factor(data$id) # set the id variable to a factor 
 
# Check structure of the data 
str(data) 
 
# The initial model build used brms package default priors — Improper flat priors were  
    # used for all b coefficients in the model. The priors for standard deviation and sigma  
    # were restricted to be non-negative, using a half student-t prior with 3 degrees of  
    # freedom, a zero location and a scale parameter that is 2.5 or the median absolute  
    # deviation of the response variable of greater than 2.5. 
# The default response distribution is a Gaussian distribution but numerous additional  
    # distribution families available  
    # see https://paul-buerkner.github.io/brms/reference/brmsfamily.html 
# Given a number of data points were not independent — players were measured multiple  
    # times — each model fitted used (1 | id) to allow the intercept for each participant  
    # to vary and allows for correlation between different observations for the same player 
# time between jumps was added as a covariate 
# This model was used to look at the dose-response relationships between training loads  
    # and jump performance 
 
Model_name <- 
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  brm(Dependent_variable ~ predictor + covariate + (1 | id), data = data) 
# If a model did not converge adjustments were made adapt delta and change treedepth 
e.g: 
#for the dose-response training load data there were a total of 28/104 models that required 
this 
Model_name <- 
  brm( 
    y ~ x + covariate + (1 |id), 
    data = data, 
    control = list(adapt_delta = 0.99, max_treedepth = 15) 
  ) 
 
# Posterior predictive checks were conducted to see how closelyY simulated from the model 
compared to the Y in the data 
pp_check(Model_name, ndraws = 50) 
pp_check(Model_name, "stat") 
pp_check(Model_name, "stat_grouped", group = "match") 
 
 
# build and check weakly informed prior 
#below is the example of the jump height prior with a lower bound set to 0 
prior_name<-prior(normal(0, 0.5), class = b, lb=0) 
 
Model_prior <- 
  brm(y ~ x + covariate+ (1 | id), 
      data = data, 
      prior = prior_name, 
      sample_prior = "only") 
pp_check(Model_prior, ndraws = 50) 
 
# you can increase the simulations by increasing the ndraws, for this study ndraws of 50 was 
used 
pp_check(Model_prior, "stat") 
pp_check(Model_prior, "stat_grouped", group = "match") 
# build model with prior 
 
Model_with_prior <- 
  brm(y ~ x + covariate+ (1 | id), 
      data = data, 
      prior = ("insert prior name")) 
# Efficient approximate leave-one-out cross-validation for each fitted models was  
    # calculated 
 
loo1 <- loo(Model_name) 
loo2 <- loo(Model_with_prior) 
print(compare(loo1, loo2), digits = 3) 
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# Bayesian R squared was calculated for each model which is a data-based estimate of the 
  # proportion of variance explained for new data. 
bayes_R2(model_with_prior) 
 
# Estimated marginal means were calculated for jump parameters. 
Em_model_with_prior <- emmeans(model_with_prior ~ time) 
 
# pairwise comparisons were calculated for each model 
Pairs_em_model_with_prior <- pairs(Em_model_with_prior) 
 
# Probability of the posterior distribution above or below 0 was calculated for the  
    # best model (as determined by LOO) 
bayestestR::p_direction(Pairs_em_model_with_prior) 
 
# Probability of the posterior distribution above the coefficient of variation was calculated. 
CV% was calculated manually on excel using the baseline measures. 
bayestestR::p_significance(Pairs_em_model_with_prior, threshold = 0.0333965)  
 


